設(shè)a,b,m為整數(shù)(m>0),若a和b被m除得的余數(shù)相同,則稱a和b對模m同余,記為a≡b(modm).若a=
C
0
20
+
C
1
20
•2+
C
2
20
22+…+
C
20
20
220
,a≡b(mod10),則b的值可以是( 。
A、2011B、2012
C、2013D、2014
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專題:綜合題,二項(xiàng)式定理
分析:根據(jù)已知中a和b對模m同余的定義,結(jié)合二項(xiàng)式定理,我們可以求出a的值,結(jié)合a≡b(bmod10),比照四個答案中的數(shù)字,結(jié)合得到答案.
解答: 解:∵a=
C
0
20
+
C
1
20
•2+
C
2
20
22+…+
C
20
20
220
,(1+2)20=320=1+2C201+22C202+…+220C2020,
∴a=320
∵31個位是3,32個位是9,33個位是7,34個位是1,35個位是3,…
∴320個位是1,
若a≡b(mod10),則b的個位也是1.
故選:A.
點(diǎn)評:本題考查的知識點(diǎn)是同余定理,其中正確理解a和b對模m同余,是解答本題的關(guān)鍵,同時利用二項(xiàng)式定理求出a的值,也很關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=
10

(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若二面角A-PC-D的大小為45°,求AP的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
2x+y-4≥0
x-y+1≥0
x-ay-2≤0
時,若目標(biāo)函數(shù)z=x+y既有最大值也有最小值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(a,1)和曲線C:x2+y2-x-y=0,若過點(diǎn)A的任意直線都與曲線C至少有一個交點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個容量為40的樣本,分成若干組,在它的頻率分布直方圖中,某一組相應(yīng)的小長方形的面積為0.4,則該組的頻數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=3+i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點(diǎn)A,將OA繞原點(diǎn)O逆時針旋轉(zhuǎn)90°得到OB,則點(diǎn)B在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①若命題p:?x0R,x02+x0+1<0,則?p:?x∈R,x2+x+1≥0;
②“(x-3)(x-4)=0”是“x-3=0”的充分而不必要條件;
③命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實(shí)數(shù)根,則m≤0”;
④若a>0,b>0,a+b=4,則
1
a
+
1
b
的最小值為1.
其中正確結(jié)論的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
2x2-1
x2+3
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出命題:p:3≥3,q:函數(shù)f(x)=
1,x≥0
-1,x<0
在R上是連續(xù)函數(shù),則在下列三個復(fù)合命題:
①“p∧q”;
②“p∨q”;
③“¬p”,
其中真命題的個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案