【題目】已知函數(shù)f(x)=tan.

(1)f(x)的定義域與最小正周期;

(2)α,f=2cos 2α,α的大小.

【答案】(1)xRx,kZ, (2)α=.

【解析】

(1)根據正切函數(shù)性質求定義域與最小正周期; (2)代入,根據兩角和正切公式以及二倍角余弦公式化簡等式為sin 2α=.再根據角范圍求結果.

(1)2x++kπ,kZ,x,kZ,

所以f(x)的定義域為xRx,kZ.

f(x)的最小正周期為.

(2)f=2cos 2α,tan=2cos 2α,

=2(cos2α-sin2α),

整理得=2(cos α+sin α)(cos α-sin α).

因為α,所以sin α+cos α≠0.

因此(cos α-sin α)2=,sin 2α=.

α,2α,所以2α=,α=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為的正方體中,分別是的中點,過三點的平面與正方體的下底面相交于直線;

(1)畫出直線

(2)的長;

(3)求D到的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中生調查了當?shù)啬承^(qū)的50戶居民由于臺風造成的經濟損失,將收集的數(shù)據分成三組,并作出如下頻率分布直方圖:

1)在直方圖的經濟損失分組中,以各組的區(qū)間中點值代表該組的各個值,并以經濟損失落入該區(qū)間的頻率作為經濟損失取該區(qū)間中點值的概率(例如:經濟損失則取,且的概率等于經濟損失落入的頻率)。現(xiàn)從當?shù)氐木用裰须S機抽出2戶進行捐款援助,設抽出的2戶的經濟損失的和為,求的分布列和數(shù)學期望.

2)臺風后居委會號召小區(qū)居民為臺風重災區(qū)捐款,此高中生調查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經濟損失是否到4000元有關?

經濟損失不超過4000元

經濟損失超過4000元

合計

捐款超過500元

30

捐款不超過500元

6

合計

附:臨界值表參考公式:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的中心為O , 四邊形OBEF為矩形,平面OBEF⊥平面ABCD , 點GAB的中點,AB=BE=2.

(1)求證:EG∥平面ADF;
(2)求二面角O-EF-C的正弦值;
(3)設H為線段AF上的點,且AH= HF , 求直線BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)y=2sin 2x的圖像向左平移 個單位長度,則評議后圖象的對稱軸為( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費與其上年度的出險次數(shù)的關聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

設該險種一續(xù)保人一年內出險次數(shù)與相應概率如下:

一年內出險次數(shù)

0

1

2

3

4

5

概率

0.30

0.15

0.20

0.20

0.10

0. 05


(1)求一續(xù)保人本年度的保費高于基本保費的概率;
(2)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(3)求續(xù)保人本年度的平均保費與基本保費的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的焦點在 軸上,AE的左頂點,斜率為k(k>0)的直線交EA,M兩點,點NE上,MANA.
(1)當t=4, 時,求△AMN的面積;
(2)當 時,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A、B、C三個班共有100名學生,為調查他們的體育鍛煉情況,通過分層抽樣獲得了部分學生一周的鍛煉時間,數(shù)據如下表(單位:小時);

A班

6 6.5 7 7.5 8

B班

6 7 8 9 10 11 12

C班

3 4.5 6 7.5 9 10.5 12 13.5


(1)試估計C班的學生人數(shù);
(2)從A班和C班抽出的學生中,各隨機選取一人,A班選出的人記為甲,C班選出的人記為乙,假設所有學生的鍛煉時間相對獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;
(3)再從A、B、C三個班中各隨機抽取一名學生,他們該周的鍛煉時間分別是7,9,8.25(單位:小時),這3個新數(shù)據與表格中的數(shù)據構成的新樣本的平均數(shù)記 ,表格中數(shù)據的平均數(shù)記為 ,試判斷 的大小,(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4b5

)求數(shù)列{bn}的通項公式;

)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

查看答案和解析>>

同步練習冊答案