4.下列說法不正確的個數(shù)為( 。
①演繹推理是一般到特殊的推理;②演繹推理得到的結論一定正確;③合情推理是演繹推理的前提,演繹推理是合情推理的可靠性.
A.3B.2C.1D.0

分析 演繹推理是由一般到特殊的推理,是一種必然性的推理,演繹推理得到的結論不一定是正確的,這要取決與前提是否真實和推理的形式是否正確,演繹推理一般模式是“三段論”形式,即大前提小前提和結論.

解答 解:演繹推理是由一般到特殊的推理,是一種必然性的推理,故①正確,
演繹推理得到的結論不一定是正確的,這要取決與前提是否真實,推理的形式是否正確,故②不正確,
演繹推理在前提和推理形式都正確的前提下,得到的結論一定是正確的,故③不正確.
故選:C.

點評 本題考查演繹推理的意義,演繹推理是由一般性的結論推出特殊性命題的一種推理模式,演繹推理的前提與結論之間有一種蘊含關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.下列關系正確的是( 。
A.0={0}B.∅⊆{0}C.0⊆{0}D.∅?{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.等比數(shù)列{an}的前n項和為Sn,若${S_{2n}}=\frac{1}{2}({a_2}+{a_4}+…+{a_{2n}}),{a_1}{a_3}{a_5}=8$,則a8=( 。
A.$-\frac{1}{16}$B.$-\frac{1}{32}$C.-64D.-128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,左右焦點分別為F1,F(xiàn)2,過F1且斜率不為0的直線l交橢圓于A,B兩點,則|BF2||AF2|的最大值為( 。
A.3B.6C.4D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知的等比數(shù)列{an}中,a1a2a3=5,a4a5a6=10,則a7a8a9=20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若Sn,Tn分別是等差數(shù)列{an},{bn}的前n項的和,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{3n+8}$,$\frac{{a}_{5}}{_{5}}$=( 。
A.$\frac{2}{3}$B.$\frac{17}{35}$C.$\frac{1}{2}$D.$\frac{9}{23}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設x,y滿足約束條件$\left\{{\begin{array}{l}{x-y-1≥0}\\{3x-2y-6≤0}\\{x≥0}\\{y≥0}\end{array}}\right.$,若目標函數(shù)$z=\frac{1}{m}\sqrt{{x^2}+{y^2}-9}(m>0)$的最大值為2,則$y=cos(mx+\frac{π}{3})$的圖象向左平移$\frac{π}{3}$后的表達式為( 。
A.$y=cos(2x+\frac{2π}{3})$B.y=cos2xC.y=-cos2xD.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若點P是曲線y=ex上任意一點,則點P到直線y=x-1的最小距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C:x2+y2=9,點A(-5,0),在直線OA上(O為坐標原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有$\frac{PB}{PA}$為一常數(shù),試求所有滿足條件的點B的坐標.

查看答案和解析>>

同步練習冊答案