【題目】已知向量a=,b=,且x∈.

(1)求a·b及|a+b|;

(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.

【答案】見解析

【解析】 (1)a·b=cos cos -sin sin =cos 2x,

|a+b|=

=2

因?yàn)閤∈,所以cos x≥0,

所以|a+b|=2cos x.

(2)由(1),可得f(x)=a·b-2λ|a+b|=cos 2x-4λcos x,

即f(x)=2(cos x-λ)2-1-2λ2.

因?yàn)閤∈,所以0≤cos x≤1.

①當(dāng)λ<0時(shí),當(dāng)且僅當(dāng)cos x=0時(shí),f(x)取得最小值-1,這與已知矛盾;

②當(dāng)0≤λ≤1時(shí),當(dāng)且僅當(dāng)cos x=λ時(shí),f(x)取得最小值-1-2λ2,由已知得-1-2λ2=-,解得λ=;

③當(dāng)λ>1時(shí),當(dāng)且僅當(dāng)cos x=1時(shí),f(x)取得最小值1-4λ,由已知得1-4λ=-,解得λ=,這與λ>1相矛盾;綜上所述λ=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對(duì)任意的,都有.當(dāng)時(shí),.若直線與函數(shù)的圖象有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)的值是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A是由a-2,2a2+5a,12三個(gè)元素構(gòu)成的,且-3∈A,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人口老齡化的到來,我國的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹碓疥P(guān)心的話題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:

年齡

人數(shù)

4

5

8

5

3

年齡

人數(shù)

6

7

3

5

4

經(jīng)調(diào)查年齡在,的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人,現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.

(Ⅰ)求年齡在的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;

(Ⅱ)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的增函數(shù),函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱.若實(shí)數(shù)滿足不等式,則的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:①;②當(dāng)時(shí), ;③;④當(dāng)秒時(shí), ;⑤當(dāng)的面積為時(shí),時(shí)間的值是;其中正確的結(jié)論是( )

A. ①⑤ B. ②⑤ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成的,是面積為200平方米的十字形地帶.計(jì)劃在正方MNPQ上建一座花壇,造價(jià)是每平方米4 200元,在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)是每平方米210元,再在四個(gè)空角上鋪上草坪,造價(jià)是每平方米80元.

(1)設(shè)總造價(jià)是S元,AD長為x米,試建立S關(guān)于x的函數(shù)關(guān)系式;

(2)當(dāng)x為何值時(shí),S最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000每生產(chǎn)一臺(tái)儀器需增加投入100,已知總收益滿足函數(shù):

R(x)

其中x是儀器的月產(chǎn)量.

(1)將利潤表示為月產(chǎn)量的函數(shù)f(x);

(2)當(dāng)月產(chǎn)量為何值時(shí)公司所獲得利潤最大?最大利潤為多少元?(總收益=總成本+利潤)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐PABCD的底面ABCD是正方形,E,F分別為ACPB上的點(diǎn),它的直觀圖,正視圖,側(cè)視圖如圖所示.

(1)EF與平面ABCD所成角的大;

(2)求二面角BPAC的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案