【題目】已知函數(shù).
(1)若關于x的方程有解,求實數(shù)a的最小整數(shù)值;
(2)若對任意的,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(1) 求拋物線的方程;
(2) 當點為直線上的定點時,求直線的方程;
(3) 當點在直線上移動時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當b=0時,求函數(shù)的極小值;
(2)若已知b>1且函數(shù)與直線y=-x相切,求b的值;
(3)在(2)的條件下,函數(shù)與直線y=-x+m有三個公共點,求m的取值范圍.(直接寫出答案)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)、滿足關系,其中是常數(shù).
(1)設,,求的解析式;
(2)是否存在函數(shù)及常數(shù)()使得恒成立?若存在,請你設計出函數(shù)及常數(shù);不存在,請說明理由;
(3)已知時,總有成立,設函數(shù)()且,對任意,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)當時,求函數(shù)的單調區(qū)間;
(2)設函數(shù),若,且在上恒成立,求的取值范圍;
(3)設函數(shù),若,且在上存在零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:已知函數(shù)在上的最小值為,若恒成立,則稱函數(shù)在上具有“”性質.
()判斷函數(shù)在上是否具有“”性質?說明理由.
()若在上具有“”性質,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域為集合上的函數(shù)滿足:①;②();③、、成等比數(shù)列;這樣的不同函數(shù)的個數(shù)為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com