【題目】按照《國務院關于印發(fā)十三五節(jié)能減排綜合工作方案的通知》(國發(fā)[201674號)的要求,到2020年,全國化學需氧量排放總量要控制在2001萬噸以內(nèi),要比2015年下降10%假設十三五期間每一年化學需氧量排放總量下降的百分比都相等,2015年后第年的化學需氧量排放總量最大值為萬噸.

1)求的解析式;

2)求2019年全國化學需氧量排放總量要控制在多少萬噸以內(nèi)(精確到1萬噸).

【答案】1;(22044萬噸.

【解析】

1)先得到化學需氧量排放總量的年平均變化率,然后再建立化學需氧量排放總量最大值的關系,從而得到答案;(2)根據(jù)求得的的表達式,代入,通過計算,得到答案.

1)設十三五期間每一年化學需氧量排放總量下降的百分比為

,即.

.

22019年全國化學需氧量排放總量,

即當時,(噸).

2019年全國化學需氧量排放總量要控制在2044萬噸以內(nèi).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標準,其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關系式為大于0的常數(shù)).按照某項指標測定,當產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

尺寸

38

48

58

68

78

88

質(zhì)量

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

(Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,求恰好取到2件優(yōu)等品的概率;

(Ⅱ)根據(jù)測得數(shù)據(jù)作了初步處理,得相關統(tǒng)計量的值如下表:

75.3

24.6

18.3

101.4

(i)根據(jù)所給統(tǒng)計量,求關于的回歸方程;

(ii)已知優(yōu)等品的收益(單位:千元)與的關系,則當優(yōu)等品的尺寸為為何值時,收益的預報值最大?(精確到0.1)

附:對于樣本,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高一新生對文理科的選擇,對1 000名高一新生發(fā)放文理科選擇調(diào)查表,統(tǒng)計知,有600名學生選擇理科,400名學生選擇文科.分別從選擇理科和文科的學生隨機各抽取20名學生的數(shù)學成績得如下累計表:

分數(shù)段

理科人數(shù)

文科人數(shù)

(1)從統(tǒng)計表分析,比較選擇文理科學生的數(shù)學平均分及學生選擇文理科的情況,并繪制理科數(shù)學成績的頻率分布直方圖.

(2)根據(jù)你繪制的頻率分布直方圖,估計意向選擇理科的學生的數(shù)學成績的中位數(shù)與平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2) 若函數(shù)有兩個零點, ,且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點作拋物線的兩條切線,切點分別為,,,分別交軸于,兩點,為坐標原點,則的面積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,、分別為、的中點,,,如圖.

1)若交平面,證明:、三點共線;

2)線段上是否存在點,使得平面平面,若存在確定的位置,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】把物體放在冷空氣中冷卻,如果物體原來的溫度是,空氣的溫度是,則1min后物體的溫度可由公式求得,其中k是常數(shù),把溫度是的物體放在15℃的空氣中冷卻,1 min后,物體的溫度是.

1)求出k的值;

2)計算開始冷卻多久后,上述物體的溫度分別是

3)判斷上述物體最終能否冷卻到12℃,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項公式;

(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)若,函數(shù)的極大值為,求實數(shù)的值;

(Ⅱ)若對任意的 上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案