分析 由題意可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,運(yùn)用和差化積公式和同角的基本關(guān)系式,計(jì)算即可得到所求值.
解答 解:x1,x2是函數(shù)f(x)=2sin2x+cos2x-m在[0,$\frac{π}{2}$]內(nèi)的兩個(gè)零點(diǎn),
可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,
即為2(sin2x1-sin2x2)=-cos2x1+cos2x2,
即有4cos(x1+x2)sin(x1-x2)=-2sin(x2+x1)sin(x2-x1),
由x1≠x2,可得sin(x1-x2)≠0,
可得sin(x2+x1)=2cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
可得sin(x2+x1)=±$\frac{2\sqrt{5}}{5}$,
由x1+x2∈[0,π],
即有sin(x2+x1)=$\frac{2\sqrt{5}}{5}$.
另解:由對(duì)稱性可知$\sqrt{5}$=2sin(x2+x1)+cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
由x1+x2∈[0,π],
即有sin(x2+x1)=$\frac{2\sqrt{5}}{5}$.
故答案為:$\frac{2\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查函數(shù)方程的轉(zhuǎn)化思想,函數(shù)零點(diǎn)問(wèn)題的解法,考查三角函數(shù)的恒等變換,同角基本關(guān)系式的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
年份x | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -2i | C. | 2 | D. | 2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$π | B. | $\sqrt{3}$π | C. | $\frac{2\sqrt{3}π}{3}$ | D. | $\frac{\sqrt{3}π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com