5.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,則|$\overrightarrow$|=1.

分析 對|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$兩邊平方,得出關于|$\overrightarrow$|的方程,解出即可.

解答 解:$\overrightarrow{a}•\overrightarrow=|\overrightarrow{a}|×|\overrightarrow|×cos\frac{π}{3}=|\overrightarrow|$,
∵|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,∴${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}=7$,
即$|\overrightarrow{|}^{2}+2|\overrightarrow|+4=7$,解得|$\overrightarrow$|=1.
故答案為:1.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.設ω=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,A={x|x=ωk-k,k∈Z},則集合A中的元素有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,若sinA=2$\sqrt{3}$cos2$\frac{A}{2}$,bcosC=3ccosB,則$\frac{c}$=$\frac{\sqrt{13}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設${z_1},{z_2}∈C,z_1^2-2{z_1}{z_2}+4z_2^2=0,|{z_2}|=2$,那么以|z1|為直徑的圓的面積為( 。
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.(理)某學習小組共12人,其中有五名是“三好學生”,現(xiàn)從該小組中任選5人參加競賽,用ξ表示這5人中“三好學生”的人數(shù),則下列概率中等于$\frac{C_7^5+C_5^1C_7^4}{{C_{12}^5}}$的是( 。
A.P(ξ=1)B.P(ξ≤1)C.P(ξ≥1)D.P(ξ≤2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.α為實數(shù),則“α=2kπ+$\frac{π}{4}$(k∈Z)”是“tanα=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓Γ:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的中心為O,一個方向向量為$\overrightarrowd0u6umk$=(1,k)的直線l與Γ只有一個公共點M.
(1)若k=1且點M在第二象限,求點M的坐標;
(2)若經(jīng)過O的直線l1與l垂直,求證:點M到直線l1的距離d≤$\sqrt{5}$-2;
(3)若點N、P在橢圓上,記直線ON的斜率為k1,且$\overrightarrowsdltyal$為直線OP的一個法向量,且$\frac{{k}_{1}}{k}$=$\frac{4}{5}$,求|ON|2+|OP|2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{33}}{7}$,且(4,0)在橢圓C上,圓M:x2+y2=r2與直線l:y=8x的一個交點的橫坐標為1.
(1)求橢圓C的方程與圓M的方程;
(2)已知A(m,n)為圓M上的任意一點,過點A作橢圓C的兩條切線l1,l2.試探究直線l1,l2的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.雙曲線16x2-9y2=144的漸近線方程為y=±$\frac{4}{3}$x.

查看答案和解析>>

同步練習冊答案