已知復(fù)數(shù)

(1)設(shè)集合中隨機(jī)取一個數(shù)作為,從集合中隨機(jī)取一個數(shù)

(2)設(shè)所表示的平面區(qū)域內(nèi)的概率。

 

【答案】

(1);(2).

【解析】本試題主要是考查了概率的運(yùn)算。

解:(1)記“復(fù)數(shù)

且每種情況出現(xiàn)的可能性相等,屬于古典概型

其中事件A包含的基本事件共有2個:  

(2)依條件可知,點(diǎn)均勻地分布在平面區(qū)域內(nèi),屬于幾何概型,該平面區(qū)域的圖形為一矩形,其面積為,而所求事件構(gòu)成的平面區(qū)域?yàn)?/p>

,其面積可求得為

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求不等式
2-x
x+4
>0
的解集
(2)設(shè)z的共軛復(fù)數(shù)是
.
z
,若z+
.
z
=4
,
.
z
=8
,求
.
z
z

(3)已知函數(shù)f(x)=(
1
3
)ax2-4x+3
,若a=-1,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題為
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實(shí)數(shù)集R中變化時,復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個,則總存在實(shí)常數(shù)p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(7)(解析版) 題型:解答題

下列命題中的真命題為   
(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實(shí)數(shù)集R中變化時,復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個,則總存在實(shí)常數(shù)p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請按照題號在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書寫的答案無效。

參考公式:

樣本數(shù)據(jù),,的標(biāo)準(zhǔn)差

         其中為樣本平均數(shù)

柱體體積公式

   

其中為底面面積,為高

 

錐體體積公式

   

其中為底面面積,為高

球的表面積和體積公式

,

其中為球的半徑

 
 


第Ⅰ卷

一、選擇題:本大題共12小題,每小題5分,滿分60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

1.已知函數(shù)的定義域?yàn)?sub>的定義域?yàn)?sub>,則

                空集

2.已知復(fù)數(shù),則它的共軛復(fù)數(shù)等于

                                  

3.設(shè)變量、滿足線性約束條件,則目標(biāo)函數(shù)的最小值為

6               7              8                  23

查看答案和解析>>

同步練習(xí)冊答案