【題目】已知{an}是各項均為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1b1=1,b2b3=2a3,a5-3b2=7.

Ⅰ)求{an}{bn}的通項公式;

Ⅱ)設(shè),nN*,求數(shù)列{cn}的前n項和.

【答案】(1)an=2n1,nN*bn=2n-1,nN*.(2)

【解析】

()根據(jù)各項均為正項的等比數(shù)列,求得q的表達式,進而求得qd的值。由a1b1=1,求得{an}{bn}的通項公式。

()數(shù)列Cn是由{}的和組成的新數(shù)列求和,分別利用錯位相減法和等差數(shù)列求和,再合并在一起。

解:()設(shè)數(shù)列{an}的公比為q,數(shù)列{bn}的公差為d,由題意q>0.

由已知,有 消去d,整理得q4-2q2-8=0,

又因為q>0,解得q=2,所以d=2.

所以數(shù)列{an}的通項公式為an=2n1nN*;

數(shù)列{bn}的通項公式為bn=2n-1,nN*.

()(1),設(shè){}的前n項和為Sn,的前n項和為Sn=1×20+3×21+5×22+…+(2n-3)×2n2+(2n-1)×2n1

2Sn=1×21+3×22+5×23+…+(2n-3)×2n1+(2n-1)×2n,

上述兩式相減,得

Sn=1+22+23+…+2n-(2n-1)×2n=2n1-3-(2n-1)×2n=-(2n-3)×2n-3,

所以,Sn=(2n-3)·2n+3,nN*

.

所以數(shù)列的前n項和為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司購買了A,B,C三種不同品牌的電動智能送風(fēng)口罩.為了解三種品牌口罩的電池性能,現(xiàn)采用分層抽樣的方法,從三種品牌的口罩中抽出25臺,測試它們一次完全充電后的連續(xù)待機時長,統(tǒng)計結(jié)果如下(單位:小時):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8


(1)已知該公司購買的C品牌電動智能送風(fēng)口罩比B品牌多200臺,求該公司購買的B品牌電動智能送風(fēng)口罩的數(shù)量;
(2)從A品牌和B品牌抽出的電動智能送風(fēng)口罩中,各隨機選取一臺,求A品牌待機時長高于B品牌的概率;
(3)再從A,B,C三種不同品牌的電動智能送風(fēng)口罩中各隨機抽取一臺,它們的待機時長分別是a,b,c(單位:小時).這3個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為μ1 , 表格中數(shù)據(jù)的平均數(shù)記為μ0 . 若μ0≤μ1 , 寫出a+b+c的最小值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國大學(xué)生機器人大賽是由共青團中央,全國學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學(xué)生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學(xué)生機器人大賽的激烈角逐之中,某大學(xué)共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現(xiàn)用分層抽樣的方法,從以上團隊中抽取20個團隊.

(1)應(yīng)從大三抽取多少個團隊?

(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數(shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓(xùn)練,備戰(zhàn)機器人大賽.從統(tǒng)計學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線x2=ay(a>0)的準(zhǔn)線l與y軸交于點P,若l繞點P以每秒 弧度的角速度按逆時針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點M到坐標(biāo)原點的距離和它到直線l:x=﹣m(m>0)的距離之比是一個常數(shù)
(Ⅰ)求點M的軌跡;
(Ⅱ)若m=1時得到的曲線是C,將曲線C向左平移一個單位長度后得到曲線E,過點P(﹣2,0)的直線l1與曲線E交于不同的兩點A(x1 , y1),B(x2 , y2),過F(1,0)的直線AF、BF分別交曲線E于點D、Q,設(shè) ,α、β∈R,求α+β的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(Ⅰ)若不等式f(x)≤6的解集為{x|﹣2≤x≤3},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若存在實數(shù)n使f(n)≤m﹣f(﹣n)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在區(qū)間上的圖像如圖所示,將該函數(shù)圖像上各點的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不變,再向右平移個單位長度后,所得到的圖像關(guān)于直線對稱,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.

1)若的概率;

(2)若的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點,對任意滿足,且最小值是.

(1)求的解析式;

(2)設(shè)函數(shù),其中,求在區(qū)間上的最小值;

(3)若在區(qū)間上,函數(shù)的圖象恒在函數(shù)的圖象上方,試確定實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案