(本小題滿分12分,(Ⅰ)小問(wèn)3分,(Ⅱ)小問(wèn)5分,(Ⅲ)小問(wèn)4分)
已知正△的邊長(zhǎng)為4,是邊上的高,分別是和邊的中點(diǎn),現(xiàn)將△沿翻折成直二面角,如圖所示.
(I)證明:∥平面;
(II)求二面角的余弦值;
|
|
解:法一:(I)證明:如圖:在△ABC中,由E、F分別是AC、BC中點(diǎn),
得EF//AB,又AB平面DEF,EF平面DEF.
∴AB∥平面DEF. ……………………………………………………………………3分
(II)∵AD⊥CD,BD⊥CD
∴∠ADB是二面角A—CD—B的平面角
∴AD⊥BD ∴AD⊥平面BCD
取CD的中點(diǎn)M,這時(shí)EM∥AD ∴EM⊥平面BCD
過(guò)M作MN⊥DF于點(diǎn)N,連結(jié)EN,則EN⊥DF
∴∠MNE是二面角E—DF—C的平面角, ………………………………………6分
在Rt△EMN中,EM=1,MN=
∴tan∠MNE=,cos∠MNE=. ………………………………………8分
(Ⅲ)在線段BC上存在點(diǎn)P,使AP⊥DE ………………………………………9分
證明:在線段BC上取點(diǎn)P,使,過(guò)P作PQ⊥CD與點(diǎn)Q,
∴PQ⊥平面ACD ∵在等邊△ADE中,∠DAQ=30°
∴AQ⊥DE∴AP⊥DE. …………………………………………12分
法二:(Ⅱ)以點(diǎn)D為坐標(biāo)原點(diǎn),直線DB、DC為x軸、y軸,建立空間直角坐標(biāo)系,則A(0,0,2)B(2,0,0)C(0,,平面CDF的法向量為設(shè)平面EDF的法向量為
則 即
|
所以二面角E—DF—C的余弦值為. ……………………………………8分
(Ⅲ)在平面坐標(biāo)系xDy中,直線BC的方程為
設(shè)
所以在線段BC上存在點(diǎn)P,使AP⊥DE. ……………………………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com