【題目】已知兩個不相等的非零向量,,兩組向量,,,,和,,,,均由2個和3個排列而成,記,表示S所有可能取值中的最小值,則下列命題中真命題的序號是________.(寫出所有真命題的序號)
①S有5個不同的值;②若,則與無關(guān);③若,則與無關(guān);
④若,則;⑤若,,則與的夾角為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于一個向量組,令,如果存在,使得,那么稱是該向量組的“長向量”
(1)若是向量組的“長向量”,且,求實數(shù)的取值范圍;
(2)已知,,均是向量組的“長向量”,試探究,,的等量關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是橢圓的左、右焦點,點在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于、兩點,為坐標(biāo)原點,軸上是否存在點,使得,若存在,求出點的坐標(biāo);若不存在,請說明理由;
(3)設(shè)為橢圓上非長軸頂點的任意一點,為線段上一點,若與的內(nèi)切圓面積相等,求證:線段的長度為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知點的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點為,準(zhǔn)線為,與軸的交點為,點在拋物線上,過點作于點,如圖1.已知,且四邊形的面積為.
(1)求拋物線的方程;
(2)若正方形的三個頂點,,都在拋物線上(如圖2),求正方形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】排一張5個獨唱和3個合唱的節(jié)目單,如果合唱不排兩頭,且任何兩個合唱不相鄰,則這種事件發(fā)生的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)為了了解各年齡層對高考改革方案的關(guān)注程度,隨機選取了200名年齡在內(nèi)的市民進行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南方智運汽車公司在我市推出了共享汽車“Warmcar”,有一款車型為“眾泰云”新能源共享汽車,其中一種租用方式“分時計費”規(guī)則為:0.15元/分鐘+0.8元/公里.已知小李家離上班地點為10公里,每天租用該款汽車上、下班各一次,由于堵車、及紅綠燈等原因每次路上開車花費的時間(分鐘)是一個隨機變量,現(xiàn)統(tǒng)計了100次路上開車花費時間,在各時間段內(nèi)是頻數(shù)分布情況如下表所示:
時間(分鐘) | |||||||
頻數(shù) | 2 | 6 | 14 | 36 | 28 | 10 | 4 |
(1)寫出小李上班一次租車費用(元)與用車時間(分鐘)的函數(shù)關(guān)系;
(2)根據(jù)上面表格估計小李平均每次租車費用;
(3)“眾泰云”新能源汽車還有一種租用方式為“按月計費”,規(guī)則為每個月收取租金2350元,若小李每個月上班時間平均按21天計算,在不計電費和情況下,請你為小李選擇一種省錢的租車方式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①若線性回歸方程為,則當(dāng)變量增加一個單位時,一定增加3個單位;②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不會改變;③線性回歸直線方程必過點;④抽簽法屬于簡單隨機抽樣;其中錯誤的說法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com