【題目】如圖,港口在港口的正東120海里處,小島在港口的北偏東的方向,且在港口北偏西的方向上,一艘科學(xué)考察船從港口出發(fā),沿北偏東方向以20海里/小時的速度駛離港口.一艘給養(yǎng)快艇從港口60海里/小時的速度駛向小島,在島轉(zhuǎn)運補(bǔ)給物資后以相同的航速送往科考船.已知兩船同時出發(fā),補(bǔ)給裝船時間為1小時.

1)求給養(yǎng)快艇從港口到小島的航行時間;

2)給養(yǎng)快艇駛離港口后,最少經(jīng)過多少小時能和科考船相遇?

【答案】(1)快艇從港口到小島的航行時間為小時(2)給養(yǎng)快艇駛離港口后,最少經(jīng)過3小時能和科考船相遇

【解析】

1)給養(yǎng)快艇從港口到小島的航行時間,已知其速度,則只要求得的路程,再利用路程公式即可求得所需的時間.

2)由(1)知,給養(yǎng)快艇從港口駛離2小時后,從小島出發(fā)與科考船匯合,根據(jù)題意確定各邊長和各角的值,然后由余弦定理解決問題.

1)由題意知,在中,,,,

所以,

于是,

而快艇的速度為海里/小時,

所以快艇從港口到小島的航行時間為小時.

2)由(1)知,給養(yǎng)快艇從港口駛離2小時后,從小島出發(fā)與科考船匯合.為使航行的時間最少,快艇從小島駛離后必須按直線方向航行,

設(shè)給養(yǎng)快艇駛離港口小時后恰與科考船在處相遇.

中,,

而在中,,,

由余弦定理,得

,

化簡,得,

解得(舍去).

.

即給養(yǎng)快艇駛離港口后,最少經(jīng)過3小時能和科考船相遇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A. 命題,則的逆命題是真命題

B. 命題存在的否定是:任意

C. 命題“pq”為真命題,則命題“p”和命題“q”均為真命題

D. 已知,則的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為a,分別是棱的中點,過點的平面分別與棱、交于點,設(shè),,給出以下四個命題:

1)平面與平面所成角的最大值為;

2)四邊形的面積的最小值為;

3)四棱錐的體積為

4)點到平面的距離的最大值為,

其中正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),焦點為,直線交拋物線,兩點,的中點,且

(1)求拋物線的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,底面為直角梯形,,分別為中點,且,.

(1)平面;

(2)若為線段上一點,且平面,求的值;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點F與拋物線焦點重合,且橢圓的離心率為,過軸正半軸一點 且斜率為的直線交橢圓于兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是否存在實數(shù)使以線段為直徑的圓經(jīng)過點,若存在,求出實數(shù)的值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺為宣傳本省,隨機(jī)對本省內(nèi)1565歲的人群抽取了人,回答問題“本省內(nèi)著名旅游景點有哪些”統(tǒng)計結(jié)果如圖表所示.

組號

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

1

2

18

3

4

5

1)分別求出的值;

2)從第2、34組回答正確的人中用分層抽樣的方法抽取6人,求第2、3、4組每組各抽取多少人?

3)指出直方圖中,這組數(shù)據(jù)的中位數(shù)是多少(取整數(shù)值)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,焦距為,拋物線 的焦點是橢圓的頂點.

(1)求的標(biāo)準(zhǔn)方程;

(2)上不同于的兩點, 滿足,且直線相切,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線ly=kx+m與橢圓+=1ab0)恰有一個公共點Pl與圓x2+y2=a2相交于A,B兩點.

)求m(用ab,k表示);

)當(dāng)k=-時,AOB的面積的最大值為a2,求橢圓的離心率.

查看答案和解析>>

同步練習(xí)冊答案