設(shè)橢圓的兩個焦點分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點P,若△F1PF2為等腰直角三角形,則橢圓的離心率是( 。
A、
2
2
B、
2
-1
2
C、2-
2
D、
2
-1
分析:設(shè)點P在x軸上方,坐標為(c,
b2
a
)
,根據(jù)題意可知|PF2|=
b2
a
,|PF2|=|F1F2|,進而根據(jù)
b2
a
=2c
求得a和c的關(guān)系,求得離心率.
解答:解:設(shè)點P在x軸上方,坐標為(c,
b2
a
)

∵△F1PF2為等腰直角三角形
∴|PF2|=|F1F2|,即
b2
a
=2c
,即
a2-c2
a2
=2
c
a
∴1-e2=2e

故橢圓的離心率e=
2
-1

故選D
點評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握圓錐曲線中a,b,c和e的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的兩個焦點分別為F1,F(xiàn)2,過F2作橢圓長軸的垂線與橢圓相交,其中的一個交點為P,若△F1PF2為等腰直角三角形,則橢圓的離心率是(  )
A、
2
-1
B、
2
+1
2
C、2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的兩個焦點分別為F1,F(xiàn)2,過F2作橢圓長軸的垂線交橢圓于點P,若△F1PF2為等腰直角三角形,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的兩個焦點分別為F1、F2,橢圓短軸的一端點為B,若△F1BF2為等腰直角三角形,則橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10.設(shè)橢圓的兩個焦點分別為,過F2作橢圓長軸的垂線交橢圓于點,若為等腰直角三角形,則橢圓的離心率為(  )

A             B              

C          D

查看答案和解析>>

同步練習冊答案