15.某公司決定采用增加廣告投入和技術(shù)改造投入兩項措施來獲得更大的收益.通過市場的預(yù)測發(fā)現(xiàn),當對兩項投入都不大于3百萬元時,每投入x百萬元廣告費,增加的銷售額可近似的用函數(shù)${y_1}=-2{x^2}+14x$(百萬元)來計算;每投入x百萬元技術(shù)改造費用,增加的銷售額可近似的用函數(shù)${y_2}=-\frac{1}{3}{x^3}+2{x^2}+5x$(百萬元)來計算.如果現(xiàn)在該公司共投入3百萬元,分別用于廣告投入和技術(shù)改造投入,那么預(yù)測該公司可增加的最大收益為$21+2\sqrt{3}$百萬元.(注:收益=銷售額-投入)

分析 先計算投入帶來的銷售額增加值,再利用導(dǎo)數(shù)法,即可確定函數(shù)的最值.

解答 解:設(shè)3百萬元中技術(shù)改造投入為x(百萬元),廣告費投入為3-x(百萬元),則廣告收入帶來的銷售額增加值為-2(3-x)2+14(3-x)(百萬元),技術(shù)改造投入帶來的銷售額增加值為-$\frac{1}{3}$x3+2x2+5x(百萬元),
所以,投入帶來的銷售額增加值F(x)=-2(3-x)2+14(3-x)-$\frac{1}{3}$x3+2x2+5x.
整理上式得F(x)=-$\frac{1}{3}$x3+3x+24,
因為F′(x)=-x2+3,令F′(x)=0,解得x=$\sqrt{3}$或x=-$\sqrt{3}$(舍去),
當x∈[0,$\sqrt{3}$),F(xiàn)′(x)>0,當x∈($\sqrt{3}$,3]時,F(xiàn)′(x)<0,
所以,x=$\sqrt{3}$時,F(xiàn)(x)取得最大值$21+2\sqrt{3}$百萬元,
故答案為$21+2\sqrt{3}$.

點評 本題考查函數(shù)模型的構(gòu)建,考查導(dǎo)數(shù)知識的運用,考查學(xué)生的計算能力,正確確定函數(shù)解析式是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若存在實數(shù)a,b,對任意實數(shù)x∈[0,4],使不等式$\sqrt{x}$-m≤ax+b≤$\sqrt{x}$+m恒成立,則m的取值范圍為(  )
A.m≥1B.m≤1C.m≤$\frac{1}{4}$D.m≥$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=log5(6-x)的定義域是(-∞,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x,y滿足$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≥0\end{array}\right.$,則目標函數(shù)z=3x+y的最小值是( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.命題“存在 x>1,x2+(m-3)x+3-m<0”的否定是?x>1,x2+(m-3)x+3-m≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)平面內(nèi)兩向量$\overrightarrow{a}$與$\overrightarrow$互相垂直,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,又k與t是兩個不同時為零的實數(shù).
(1)若$\overrightarrow{x}$=$\overrightarrow{a}$+(t-3)$\overrightarrow$與$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow$垂直,試求k關(guān)于t的函數(shù)關(guān)系式k=f(t);
(2)求函數(shù)k=f(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若log2a(5a-2)>0,則實數(shù)a的取值范圍為$a>\frac{3}{5}$或$\frac{2}{5}<a<\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)z滿足(3+2i)•z=5-i,則|z|=( 。
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=lnx-x2與g(x)=(x-2)2+$\frac{1}{2(2-x)}$-m(m∈R)的圖象上存在關(guān)于(1,0)對稱的點,則實數(shù)m的取值范圍是(  )
A.(-∞,1-ln2)B.(-∞,1-ln2]C.(1-ln2,+∞)D.[1-ln2,+∞)

查看答案和解析>>

同步練習冊答案