【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)當(dāng)時(shí),過(guò)坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求實(shí)數(shù)的值;
(Ⅲ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為: ,當(dāng)時(shí),若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時(shí),試問(wèn)函數(shù)是否存在“轉(zhuǎn)點(diǎn)”.若存在,請(qǐng)求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)-2;(Ⅱ) ;(Ⅲ)參考解析
【解析】試題分析:(Ⅰ)先求導(dǎo)數(shù),再求導(dǎo)數(shù)零點(diǎn),最后根據(jù)導(dǎo)數(shù)符號(hào)變化規(guī)律,確定極小值,(Ⅱ)根據(jù)導(dǎo)數(shù)幾何意義得切線的斜率等于切點(diǎn)處導(dǎo)數(shù)值,可得關(guān)于的方程,再利用導(dǎo)數(shù)研究單調(diào)性確定方程解的個(gè)數(shù),最后根據(jù)估值得方程的解,(Ⅲ)先求切線方程得,再求函數(shù)導(dǎo)數(shù),最后根據(jù)導(dǎo)函數(shù)的兩個(gè)零點(diǎn)必須相同得“轉(zhuǎn)點(diǎn)”.
試題解析:(Ⅰ)當(dāng)時(shí), ,
當(dāng)時(shí);當(dāng)時(shí);當(dāng)時(shí).
所以當(dāng)時(shí), 取到極小值-2.
(Ⅱ),所以切線的斜率,
整理得,顯然是這個(gè)方程的解,
又因?yàn)?/span>在上是增函數(shù),
所以方程有唯一實(shí)數(shù)解,故.
(Ⅲ)當(dāng)時(shí),函數(shù)在其圖象上一點(diǎn)處的切線方程為,
設(shè),則, ,
若, 在上單調(diào)遞減,所以當(dāng)時(shí),此時(shí);
所以在上不存在“轉(zhuǎn)點(diǎn)”.
若時(shí), 在上單調(diào)遞減,所以當(dāng)時(shí),此時(shí),所以在上不存在“轉(zhuǎn)點(diǎn)”.
若時(shí),即在上是增函數(shù),
當(dāng)時(shí), ,
當(dāng)時(shí), ,即點(diǎn)為“轉(zhuǎn)點(diǎn)”,
故函數(shù)存在“轉(zhuǎn)點(diǎn)”,且2是“轉(zhuǎn)點(diǎn)”的橫坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)高一年級(jí)學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在和的人中共抽取6人,再?gòu)倪@6人中選2人,求2人服務(wù)次數(shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是函數(shù)的一個(gè)極值點(diǎn).
(1)求;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不等的根,求實(shí)數(shù)的取值范圍;
(3)若存在,當(dāng)時(shí),恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{}的前n項(xiàng)和 (n為正整數(shù))。
(1)令,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(2)令,試比較與的大小,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù), 是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線方程是.
(1)求的值;(2)求的單調(diào)區(qū)間;
(3)設(shè)(其中為的導(dǎo)函數(shù))。證明:對(duì)任意,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四棱柱,側(cè)棱底面, , ,且, , ,側(cè)棱.
(1)若為上一點(diǎn),試確定點(diǎn)的位置,使平面;
(2)在(1)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)在點(diǎn)點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的極值點(diǎn)和極值;
(3)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在遂寧市中央商務(wù)區(qū)的街道,有一中年人吆喝“送錢”,只見(jiàn)他手拿一黑色小布袋,袋中有3只黃色、2只白色的乒乓球(其體積,質(zhì)地完全相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得統(tǒng)一顏色的3個(gè)球,攤主送個(gè)摸球者10元錢;若摸得非同一顏色的3個(gè)球。摸球者付給攤主2元錢。
(1)摸出的3個(gè)球中至少有1個(gè)白球的概率是多少?
(2)假定一天中有100人次摸獎(jiǎng),試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com