【題目】已知是函數(shù)的一個極值點.
(1)求;
(2)求函數(shù)的單調區(qū)間;
(3)若直線與函數(shù)的圖象有3個交點,求的取值范圍.
【答案】(1);(2)單調增區(qū)間是,單調減區(qū)間是;(3).
【解析】
試題分析:(1)先求導,再由是函數(shù)的一個極值點即求解;(2)由(2)確定,再由和求得單調區(qū)間;(3)由(2)知,在內(nèi)單調增加,在內(nèi)單調減少,在上單調增加,且當或時,,可得的極大值為,極小值為,再由直線與函數(shù)的圖象有個交點則須有求解.
試題解析:(1)因為,
所以,因此
(2)由(1)知,
,
.
當時,,
當時,,
所以的單調增區(qū)間是,
的單調減區(qū)間是
(3)由(2)知,在內(nèi)單調增加,在內(nèi)單調減少,在上單調增加,且當或時,
所以的極大值為,極小值為,
因此,
所以在在三個單調區(qū)間直線有的圖象各有一個交點,當且僅當,
因此,的取值范圍為
科目:高中數(shù)學 來源: 題型:
【題目】汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標準型兩類型號,某月的產(chǎn)量如下表:(單位:輛). 按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,對于函數(shù),稱向量為函數(shù)的伴隨向量,同時稱函數(shù)為向量的伴隨函數(shù).
(Ⅰ)設函數(shù),試求的伴隨向量;
(Ⅱ)記向量的伴隨函數(shù)為,求當且時的值;
(Ⅲ)由(Ⅰ)中函數(shù)的圖像(縱坐標不變)橫坐標伸長為原來的倍,再把整個圖像向右平移個單位長度得到的圖像。已知 ,問在的圖像上是否存在一點,使得.若存在,求出點坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2(a+1)x+2alnx
(1)若a=2. 求f(x)的極值. (2)若a>0. 求f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且直線是函數(shù)的一條切線.
(1)求的值;
(2)對任意的,都存在,使得,求的取值范圍;
(3)已知方程有兩個根,若,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)當時,過坐標原點作曲線的切線,設切點為,求實數(shù)的值;
(Ⅲ)設定義在上的函數(shù)在點處的切線方程為: ,當時,若在內(nèi)恒成立,則稱為函數(shù)的“轉點”.當時,試問函數(shù)是否存在“轉點”.若存在,請求出“轉點”的橫坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人玩一種游戲,每次由甲、乙各出1到5根手指頭,若和為偶數(shù)算甲贏,否則算乙贏.
(1)若以A表示和為6的事件,求P(A).
(2)這種游戲規(guī)則公平嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com