5.已知cos($\frac{π}{3}$+α)=$\frac{1}{3}$(0<α<$\frac{π}{2}$),則sin(π+α)=$\frac{\sqrt{3}-2\sqrt{2}}{6}$.

分析 由已知求出$\frac{π}{3}+α$的范圍,進一步求得sin($\frac{π}{3}$+α),則由sin(π+α)=-sinα=-sin[($\frac{π}{3}+α$)$-\frac{π}{3}$],展開兩角差的正弦得答案.

解答 解:∵0<α<$\frac{π}{2}$,
∴$\frac{π}{3}+α$∈($\frac{π}{3},\frac{5π}{6}$),
又cos($\frac{π}{3}$+α)=$\frac{1}{3}$,
∴sin($\frac{π}{3}$+α)=$\frac{2\sqrt{2}}{3}$,
∴sin(π+α)=-sinα=-sin[($\frac{π}{3}+α$)$-\frac{π}{3}$]
=-sin($\frac{π}{3}+α$)cos$\frac{π}{3}$+cos($\frac{π}{3}+α$)sin$\frac{π}{3}$
=$-\frac{2\sqrt{2}}{3}×\frac{1}{2}$$+\frac{1}{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}-2\sqrt{2}}{6}$.
故答案為:$\frac{\sqrt{3}-2\sqrt{2}}{6}$.

點評 本題考查三角函數(shù)的化簡求值,關(guān)鍵是“拆角配角”思想的應(yīng)用,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,周長為1的圓的圓心C在y軸上,一動點M從圓上的點A(0,1)開始按逆時針方向繞圓運動一周,記走過的弧長為x,直線AM與x軸交于點N(t,0),則函數(shù)t=f(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.抽氣機每次抽出容器內(nèi)空氣的50%,則至少要抽10次才能使容器內(nèi)剩下的空氣少于原來的0.1%.(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知集合A={0,2,3},B={2,a2+1},且B⊆A,則實數(shù)a=$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=|x2-1|+(k+4)x,g(x)=x2-4x.
(1)若函數(shù)f(x)的圖象過點(1,0),求k的值;
(2)若函數(shù)y=g(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t,若存在,求出t的值;若不存在,請說明理由(區(qū)間[p,q]的長度為q-p);
(3)若關(guān)于x的方程f(x)+g(x)=0在(0,2)上有兩個不同的x1,x2解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+si{n}^{2}α}\end{array}\right.$(α為參數(shù)),以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為θ=$\frac{π}{4}$,試求直線l與曲線C的交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$f(x)=sin({x+\frac{π}{2}}),g(x)=cos({x-\frac{π}{2}})$,則下列結(jié)論中正確的是( 。
A.函數(shù)f(x)的圖象向左平移π個單位長度可得到y(tǒng)=g(x)的函象
B.函數(shù)y=f(x)+g(x)的值域為[-2,2]
C.函數(shù)y=f(x)•g(x)在$[{0,\frac{π}{2}}]$上單調(diào)遞增
D.函數(shù)y=f(x)-g(x)的圖象關(guān)于點$({\frac{π}{4},0})$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若曲線x2+(y+3)2=4(其中y≥-3)與直線y=k(x-2)有兩個不同的交點,則實數(shù)k的取值范圍為$\frac{5}{12}$<k≤$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知命題p:若x>y,則-x<-y;命題q:若x<y,則x2>y2,在命題①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習冊答案