分析 由已知求出$\frac{π}{3}+α$的范圍,進一步求得sin($\frac{π}{3}$+α),則由sin(π+α)=-sinα=-sin[($\frac{π}{3}+α$)$-\frac{π}{3}$],展開兩角差的正弦得答案.
解答 解:∵0<α<$\frac{π}{2}$,
∴$\frac{π}{3}+α$∈($\frac{π}{3},\frac{5π}{6}$),
又cos($\frac{π}{3}$+α)=$\frac{1}{3}$,
∴sin($\frac{π}{3}$+α)=$\frac{2\sqrt{2}}{3}$,
∴sin(π+α)=-sinα=-sin[($\frac{π}{3}+α$)$-\frac{π}{3}$]
=-sin($\frac{π}{3}+α$)cos$\frac{π}{3}$+cos($\frac{π}{3}+α$)sin$\frac{π}{3}$
=$-\frac{2\sqrt{2}}{3}×\frac{1}{2}$$+\frac{1}{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}-2\sqrt{2}}{6}$.
故答案為:$\frac{\sqrt{3}-2\sqrt{2}}{6}$.
點評 本題考查三角函數(shù)的化簡求值,關(guān)鍵是“拆角配角”思想的應(yīng)用,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)的圖象向左平移π個單位長度可得到y(tǒng)=g(x)的函象 | |
B. | 函數(shù)y=f(x)+g(x)的值域為[-2,2] | |
C. | 函數(shù)y=f(x)•g(x)在$[{0,\frac{π}{2}}]$上單調(diào)遞增 | |
D. | 函數(shù)y=f(x)-g(x)的圖象關(guān)于點$({\frac{π}{4},0})$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com