4.已知命題p:若x>y,則-x<-y;命題q:若x<y,則x2>y2,在命題①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

分析 先判定命題p、命題q的真假,再根據(jù)符合命題的真值表判定即可.

解答 解:命題p:若x>y,則-x<-y,為真命題;命題q:若x<y,則x2>y2,為假命題,
∴①p∧q為假命題;②p∨q為真命題;③p∧(¬q)為真命題;④(¬p)∨q為假命題
故選:C

點(diǎn)評(píng) 本題考查了p∧q、p∨q、¬q的真假判定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知cos($\frac{π}{3}$+α)=$\frac{1}{3}$(0<α<$\frac{π}{2}$),則sin(π+α)=$\frac{\sqrt{3}-2\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a=1,b=$\sqrt{3}$,則“A=30°“是“B=60°”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知一個(gè)路口的紅綠燈,紅燈的時(shí)間為35秒,黃燈的時(shí)間為5秒,綠燈的時(shí)間為60秒,老王開車上班要經(jīng)過3個(gè)這樣的路口,則老王遇見兩次綠燈的概率為(  )
A.$\frac{3}{5}$B.$\frac{13}{20}$C.$\frac{54}{125}$D.$\frac{27}{125}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出定義:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的三個(gè)判斷:
①y=f(x)的定義域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$];  
②點(diǎn)(k,0)是y=f(x)的圖象的對(duì)稱中心,其中k∈Z;
③函數(shù)y=f(x)在($\frac{1}{2}$,$\frac{3}{2}$]上是增函數(shù).
則上述判斷中所有正確的序號(hào)是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.過點(diǎn)A(0,2)作動(dòng)直線m與圓C:x2+y2+8y+7=0交于P、Q兩點(diǎn).
(1)求圓C的半徑和圓心C的坐標(biāo);
(2)若直線m的斜率存在,求直線m的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此做了四次試驗(yàn),得到的數(shù)據(jù)如表所示:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(h)2.5344.5
($\widehat{a}=\overline{y}-\widehat\overline{x}$,$\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$)
(Ⅰ)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅲ)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)判斷函數(shù)g(x)=1-$\frac{2}{{{a^x}+1}}$的奇偶性;
(2)解不等式log${\;}_{\frac{1}{3}}$(x-1)>log${\;}_{\frac{1}{3}}$(a-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若△ABC中,D為邊AC的中點(diǎn),角C為$\frac{π}{3}$,且BC=8,BD=7,則△ABC的面積為$6\sqrt{3}$或$20\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案