若函數(shù)f(x)在[a,b]上連續(xù),且同時滿足f(a)·f(b)<0,f(a)·f()>0.則( )
A.f(x)在[a,]上有零點 B.f(x)在[,b]上有零點
C.f(x)在[a,]上無零點 D.f(x)在[,b]上無零點
科目:高中數(shù)學 來源: 題型:
若函數(shù)f(x)=ax(a>0,a≠1)在[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)在[0,+∞)上是增函數(shù),則a=________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知f(x)=-4x2+4ax-4a-a2(a<0)在區(qū)間[0,1]上有最大值-5,則實數(shù)a等于( )
A.-1 B.-
C.- D.-5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=x2-2ax+2,x∈[-3,3].
(1)當a=-5時,求f(x)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[-3,3]上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
二次函數(shù)f(x)=ax2+bx+c(x∈R)的部分對應值如下表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
y | 6 | m | -4 | -6 | -6 | -4 | n | 6 |
由此可以判斷方程ax2+bx+c=0的兩個根所在的區(qū)間是( )
A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)
C.(-1,1)和(1,2) D.(-∞,-3)和(4,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com