設(shè)數(shù)列{an}滿足a1+2a2=3,且對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都有
PnPn+1
=(1,2)
,則{an}的前n項(xiàng)和Sn為( 。
A.n(n-
4
3
)
B.n(n-
3
4
)
C.n(n-
2
3
)
D.n(n-
1
2
)
∵Pn(n,an),∴Pn+1(n+1,an+1),故
PnPn+1
=(1,an+1-an)  =(1,2)

an+1-an=2,∴an是等差數(shù)列,公差d=2,將a2=a1+2,代入a1+2a2=3中,
解得a1=-
1
3
,∴an=-
1
3
+2(n-1)=2n-
7
3

Sn=
a1+an
2
n=
-
1
3
+2n-
7
3
2
n=(n-
4
3
)n

故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=1,且對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項(xiàng)公式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí).
則{cn}
是公差為8的準(zhǔn)等差數(shù)列.
(I)設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式:
(Ⅱ)設(shè)(I)中的數(shù)列{an}的前n項(xiàng)和為Sn,試研究:是否存在實(shí)數(shù)a,使得數(shù)列Sn有連續(xù)的兩項(xiàng)都等于50.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí)
,則數(shù)列{cn}是公差為8的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準(zhǔn)等差數(shù)列;
(Ⅱ)求證:{an}的通項(xiàng)公式及前20項(xiàng)和S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2+a4=6,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數(shù)列{cn}的前n項(xiàng)和Sn為( 。
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足:a1=2,an+1=1-
1
an
,令An=a1a2an,則A2013
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案