【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸的正半軸,且過點(diǎn),過的直線交拋物線于,兩點(diǎn).
(1)求拋物線的方程;
(2)設(shè)直線是拋物線的準(zhǔn)線,求證:以為直徑的圓與直線相切.
【答案】(1);(2)證明見詳解.
【解析】
(1)根據(jù)題意,設(shè)出拋物線方程,根據(jù)拋物線經(jīng)過的點(diǎn)的坐標(biāo)滿足方程,即可求得;
(2)設(shè)出直線方程,聯(lián)立拋物線方程,根據(jù)弦長公式和直線與圓位置關(guān)系的判斷方法,即可求證.
(1)由題可設(shè)拋物線方程為,
因?yàn)閽佄锞過點(diǎn),故可得,解得,
故拋物線方程為.
(2)由拋物線方程可知,點(diǎn)的坐標(biāo)為,的方程為.
當(dāng)直線斜率不存在時(shí),直線方程為,
聯(lián)立拋物線方程,可得,或,
不妨設(shè).
則以為直徑的圓的圓心為,半徑,
又圓心到直線的距離為,
故此時(shí)滿足以為直徑的圓與準(zhǔn)線相切.
當(dāng)直線斜率存在時(shí),容易知,設(shè)直線的方程為,
聯(lián)立拋物線方程,可得.
設(shè),
則.
則以為直徑的圓的圓心的橫坐標(biāo)為,
即圓心橫坐標(biāo)為.
則圓心到直線的距離為;
又弦長
則以為直徑的圓的半徑,
則圓心到直線的距離等于半徑.
故以為直徑的圓與準(zhǔn)線相切.
綜上所述:以為直徑的圓與直線相切,即證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)E,F分別為邊,的中點(diǎn),將、分別沿、所在的直線進(jìn)行翻折,在翻折的過程中,下列說法錯(cuò)誤是( )
A.存在某個(gè)位置,使得直線與直線所成的角為
B.存在某個(gè)位置,使得直線與直線所成的角為
C.A、C兩點(diǎn)都不可能重合
D.存在某個(gè)位置,使得直線垂直于直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線C:y2=2px(p>0)的準(zhǔn)線l上的點(diǎn)M(﹣1,0)的直線l1交拋物線C于A,B兩點(diǎn),線段AB的中點(diǎn)為P.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若|MA||MB|=λ|OP|2,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與斜率為且過拋物線焦點(diǎn)的直線交于、兩點(diǎn),滿足弦長.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)已知為拋物線上任意一點(diǎn),為拋物線內(nèi)一點(diǎn),求的最小值,以及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過點(diǎn)P(1,2),傾斜角α= .
(1)寫出圓C的普通方程和直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若有兩個(gè)零點(diǎn),求a的取值范圍;
(2)設(shè),,直線的斜率為k,若恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說明殘差平方和越大;
②對于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越;
③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過點(diǎn);
④是用來判斷兩個(gè)分類變量是否有關(guān)系的隨機(jī)變量,只對于兩個(gè)分類變量適合;
以上幾種說法正確的序號是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com