【題目】已知、分別為橢圓的左、右焦點,點關(guān)于直線對稱的點Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點,且,則___.
【答案】
【解析】
根據(jù)對稱性和中位線判斷為等腰直角三角形,根據(jù)橢圓的定義求得離心率.設(shè)根據(jù)得到,設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,根據(jù)根與系數(shù)關(guān)系列方程,解方程求得的值.
由于點關(guān)于直線對稱的點Q在橢圓上,由于的傾斜角為,畫出圖像如下圖所示,由于是坐標(biāo)原點,根據(jù)對稱性和中位線的知識可知為等腰直角三角形,且為短軸的端點,故離心率.不妨設(shè),則橢圓方程化為,設(shè)直線的方程為,代入橢圓方程并化簡得.設(shè),則①,②.由于,故③.解由①②③組成的方程組得,即.
故填:(1);(2).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點A(0,1)對稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區(qū)間(0,2]上的值不小于6,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某微信群主發(fā)60個隨機紅包(即每個人搶到的紅包中的錢數(shù)是隨機的,且每人只能搶一個),紅包被一搶而空,后據(jù)統(tǒng)計,60個紅包中的錢數(shù)(單位:元)分配如下頻率分布直方圖所示(其分組區(qū)間為,,,,).
(1)求頻率分布直方圖中的值及紅包錢數(shù)的平均值;
(2)試估計該群中某成員搶到錢數(shù)不小于3元的概率;
(3)若該群中成員甲、乙兩人都搶到4.5元紅包,現(xiàn)系統(tǒng)將從搶到4元及以上紅包的人中隨機抽取2人,求甲、乙至少有一人被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,離心率為,是橢圓上的一個動點,且面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)直線斜率為,且與橢圓的另一個交點為,是否存在點,使得若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動點P到兩點、的距離之差的絕對值等于.設(shè)點P的軌跡為C.
(1)求C的軌跡方程;
(2)過點的直線l與曲線C交于M,N兩點,且Q恰好為線段的中點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點是線段上的動點,則下列說法錯誤的是( )
A. 當(dāng)點移動至中點時,直線與平面所成角最大且為
B. 無論點在上怎么移動,都有
C. 當(dāng)點移動至中點時,才有與相交于一點,記為點,且
D. 無論點在上怎么移動,異面直線與所成角都不可能是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位長度,再將所得函數(shù)圖象上的所有點的橫坐標(biāo)縮短到原來的,得到函數(shù)的圖象.已知函數(shù)的部分圖象如圖所示,則函數(shù)( )
A.最小正周期為,最大值為2
B.最小正周期為,圖象關(guān)于點中心對稱
C.最小正周期為,圖象關(guān)于直線對稱
D.最小正周期為,在區(qū)間單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系.己知直線的直角坐標(biāo)方程為,曲線C的極坐標(biāo)方程為.
(1)設(shè)t為參數(shù),若,求直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)已知:直線與曲線C交于A,B兩點,設(shè),且,,依次成等比數(shù)列,求實數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com