(本小題滿分12分)
已知橢圓C:
(a>b>0)的右焦點為F
(1,0),離心率為
,P為左頂點。
(1)求橢圓C的方程;
(2)設過點F
的直線交橢圓C于A,B兩點,若△PAB的面積為
,求直線AB的方程。
(1)
+
="1." (2) 直線AB的方程為x+
y-1=0或x-
y-1="0."
試題分析:解:(1)由題意可知:c=1,
=
,所以a=2.
所以b
=a
-c
=3.
所以橢圓C的標準方程為
+
=1.
(2)根據(jù)題意可設直線AB的方程為x=my+1,A(x
,y
),B(x
,y
).
由
可得(3m
+4)y
+6my-9=0.
所以△=36m
+36(3m
+4)>0,y
+y
=
,y
y
=-
.
因為P為左頂點,所以P的坐標是(-2,0).
所以△PAB的面積S=
.
=
因為△PAB的面積為
,所以
=
.
令t=
,則
=
(t≥1).
解得t
=
(舍),t
=2.
所以m=
.
所以直線AB的方程為x+
y-1=0或x-
y-1="0."
點評:研究橢圓的方程的求解一般用待定系數(shù)法,同時可以結合韋達定理來得到弦長表示面積,屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)
若直線
過點(0,3)且與拋物線y
2=2x只有一個公共點,求該直線方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設橢圓的兩個焦點分別為
,過
作橢圓長軸的垂線交橢圓于點
,
若
為等腰直角三角形,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題13分)在平面直角坐標系
中,
是拋物線
的焦點,
是拋物線
上位于第一象限內的任意一點,過
三點的圓的圓心為
,點
到拋物線
的準線的距離為
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)是否存在點
,使得直線
與拋物線
相切于點
?若存在,求出點
的坐標;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若雙曲線
的一條漸近線方程為
,則此雙曲線的離心率為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
如圖,已知橢圓
=1(
a>
b>0),
F1、
F2分別為橢圓的左、右焦點,
A為橢圓的上的頂點,直線
AF2交橢圓于另 一點
B.
(1)若∠
F1AB=90°,求橢圓的離心率;
(2)若
=2
,
·
=
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點
分別是橢圓
的左、右焦點,過
且垂直于
軸的直線與橢圓交于
A、
B兩點,若
為正三角形,則該橢圓的離心率
是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知圓
的圓心為原點
,且與直線
相切。
(1)求圓
的方程;
(2)點
在直線
上,過
點引圓
的兩條切線
,切點為
,求證:直線
恒過定點。
查看答案和解析>>