已知函數(shù)的定義域為,
(1)求;
(2)若,且,求實數(shù)的取值范圍.

(1);(2).

解析試題分析:(1)求函數(shù)的定義域問題,涉及對數(shù)其真數(shù)應(yīng)大于0,分母應(yīng)不為0,二次根式的被開方數(shù)式應(yīng)大于或等于0,注意考慮問題應(yīng)全面,不逆漏.本題函數(shù)由意義需要,接不等是組記得元函數(shù)的定義域;(2)對集合,解方程需要對進行分類討論.在由求出的取值范圍.
試題解析:(1)由,解得, .
(2),
當(dāng)時,,
當(dāng)時,,

或解,

考點:函數(shù)的定義域,交集的概念,一元二次不等式的解法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足:對任意,都有成立,且時,
(1)求的值,并證明:當(dāng)時,;
(2)判斷的單調(diào)性并加以證明;
(3)若上遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù),如果對任意,恒有,)成立,則稱階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)時,,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)時,,求證:函數(shù)上無零點;
(3)已知函數(shù)階縮放函數(shù),且當(dāng)時,的取值范圍是,求)上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù)當(dāng)時,,且對任意的。
(1)求證:
(2)求證:對任意的,恒有;
(3)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)如果函數(shù)上是單調(diào)減函數(shù),求的取值范圍;
(2)是否存在實數(shù),使得方程在區(qū)間內(nèi)有且只有兩個不相等的實數(shù)根?若存在,請求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)用定義證明上單調(diào)遞增;
(2)若上的奇函數(shù),求的值;
(3)若的值域為D,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)求的值;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實常數(shù)).
(1)當(dāng)時,證明:
不是奇函數(shù);②上的單調(diào)遞減函數(shù).
(2)設(shè)是奇函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實數(shù)k的最大值.

查看答案和解析>>

同步練習(xí)冊答案