已知函數(shù),且。
(Ⅰ)求的值;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.
(Ⅰ)(Ⅱ)單調(diào)遞增
解析試題分析:(Ⅰ)利用得出的關(guān)系,再根據(jù)得出 的值,屬于待定系數(shù)法;
(Ⅱ)利用單調(diào)性的定義取值--作差--定號--判斷,證明.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d0/3/wkyq63.png" style="vertical-align:middle;" />,,由,,又,,, .(5分)
(Ⅱ)由(1)得,函數(shù)在單調(diào)遞增。
證明:任取且,
(8分)
,
(10分)
即,故函數(shù)在上單調(diào)遞增 (12分)
考點(diǎn):如何求參數(shù),單調(diào)性的證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)探究函數(shù)f(x)=ax+(a、b是正常數(shù))在區(qū)間和上的單調(diào)性(只需寫出結(jié)論,不要求證明).并利用所得結(jié)論,求使方程f(x)-log4m=0有解的m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ca/2/sl6je1.png" style="vertical-align:middle;" />,
(1)求;
(2)若,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù).
(l)求的單調(diào)區(qū)間和極值;
(2)若對任意恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷的單調(diào)性并證明;
(Ⅲ)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com