定義在上的函數(shù)當(dāng)時,,且對任意的有。
(1)求證:,
(2)求證:對任意的,恒有;
(3)若,求的取值范圍。
(1)見解析(2) 見解析(3)
解析試題分析:解抽象函數(shù)問題多用賦值法,找出其單調(diào)性奇偶性來解決不等問題.
(Ⅰ)令,且時,,可求;
(Ⅱ)令,易求,由已知時,,當(dāng)時,,,,從而可證結(jié)論;
(Ⅲ)任取,依題意,可證
,從而可證是上的增函數(shù),再根據(jù)單調(diào)性來解不等式.
試題解析:
(1)證明: 令,得,
又因為時,所以
(2) 令,得
即
因為當(dāng)時,,
所以當(dāng)時,,,
又因為
所以對任意的,恒有
(3) 任取,依題意,可得
因為,所以,所以
又因為對任意的,恒有
所以即
所以是上的增函數(shù)
由
可得其解集:
考點:抽象函數(shù)及其應(yīng)用;函數(shù)單調(diào)性的判斷與證明;函數(shù)恒成立問題,二次不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)和的圖像關(guān)于原點對稱,且.
(1)求函數(shù)的解析式;
(2)解不等式;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()
(1)求的定義域;
(2)問是否存在實數(shù)、,當(dāng)時,的值域為,且 若存在,求出、的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù)且,且.
(1) 如果實數(shù)滿足且,函數(shù)是否具有奇偶性? 如果有,求出相應(yīng)的值;如果沒有,說明原因;
(2) 如果,討論函數(shù)的單調(diào)性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,判斷的奇偶性,并說明理由;
(2)當(dāng)時,若,求的值;
(3)若,且對任何不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com