【題目】已知函數(shù),若存在,使得關(guān)于的不等式恒成立,則的取值范圍為

A. B. C. D.

【答案】A

【解析】

解法1:變換主元研究函數(shù),進(jìn)而令的單調(diào)性. 解法2:按照和當(dāng)對(duì)函數(shù)進(jìn)行求導(dǎo),討論單調(diào)性.

解法1:(1)當(dāng)時(shí),,所以;

2)當(dāng)時(shí),令,

因?yàn)榇嬖?/span>,使得,等價(jià)于,

所以,存在,使得關(guān)于的不等式恒成立,

等價(jià)于恒成立.

),則,所以單調(diào)遞增,

所以,即;

3)當(dāng)時(shí),因?yàn)?/span>,所以,

所以要存在,使得關(guān)于的不等式恒成立,

等價(jià)于恒成立.

),則單調(diào)遞減,所以,即.

綜上,得.

解法2,

1)當(dāng)時(shí),,所以單調(diào)遞減,且當(dāng)趨向于時(shí),趨向于,與不等式恒成立矛盾,舍去;

2)當(dāng)時(shí),令,所以在區(qū)間單調(diào)遞增;

,,所以在區(qū)間單調(diào)遞減;

所以存在,使得成立.

,

所以:當(dāng)時(shí),單調(diào)遞增;

當(dāng)時(shí),,單調(diào)遞減.

所以,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增數(shù)列共有2019項(xiàng),且各項(xiàng)均不為零,,若從數(shù)列中任取兩項(xiàng),,當(dāng)時(shí),仍是數(shù)列中的項(xiàng),則數(shù)列中的各項(xiàng)和______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的華為手機(jī)專賣店對(duì)該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻率分布直方圖如圖:

(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計(jì)值(均精確到個(gè)位);

(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動(dòng),現(xiàn)從這20人中,隨機(jī)選取2人各贈(zèng)送一部華為手機(jī),求這2名市民年齡都在內(nèi)的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線上.經(jīng)測(cè)量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營(yíng),打算在扇形區(qū)域外修建一條公路,分別與射線交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).

(1)試將公路的長(zhǎng)度表示為的函數(shù),并寫出的取值范圍;

(2)試確定的值,使得公路的長(zhǎng)度最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合均為實(shí)數(shù)集的子集,記.

(1)已知,試用列舉法表示

(2)設(shè),當(dāng)時(shí),曲線的焦距為,如果,,設(shè)中的所有元素之和為,求的值;

3)在(2)的條件下,對(duì)于滿足,且的任意正整數(shù),不等式恒成立, 求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形中,線段BC的端點(diǎn)分別在邊、上滑動(dòng),且,現(xiàn)將,分別沿ABAC折起使點(diǎn)重合,重合后記為點(diǎn),得到三被錐.現(xiàn)有以下結(jié)論:

平面;

②當(dāng)分別為、的中點(diǎn)時(shí),三棱錐的外接球的表面積為;

的取值范圍為;

④三棱錐體積的最大值為.

則正確的結(jié)論的個(gè)數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知是曲線上的動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),求證:函數(shù)恰有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次高三年級(jí)模擬考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從A,B兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,作為下一步教學(xué)的參考依據(jù),計(jì)劃從900名考生的選做題成績(jī)中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名考生選做題的成績(jī)按照隨機(jī)順序依次編號(hào)為001~900.

1)若采用系統(tǒng)抽樣法抽樣,從編號(hào)為001~090的成績(jī)中用簡(jiǎn)單隨機(jī)抽樣確定的成績(jī)編號(hào)為025,求樣本中所有成績(jī)編號(hào)之和;

2)若采用分層抽樣,按照學(xué)生選擇A題目或B題目,將成績(jī)分為兩層.已知該校高三學(xué)生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績(jī)平均數(shù)為5,方差為2B題目的成績(jī)平均數(shù)為5.5,方差為0.25.

i)用樣本估計(jì)該校這900名考生選做題得分的平均數(shù)與方差;

ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績(jī)的中位數(shù)和B題目成績(jī)的中位數(shù)都是5.5.從樣本中隨機(jī)選取兩個(gè)大于樣本平均值的數(shù)據(jù)做進(jìn)一步調(diào)查,求取到的兩個(gè)成績(jī)來自不同題目的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案