【題目】已知遞增數(shù)列共有2019項(xiàng),且各項(xiàng)均不為零,,若從數(shù)列中任取兩項(xiàng),當(dāng)時(shí),仍是數(shù)列中的項(xiàng),則數(shù)列中的各項(xiàng)和______.

【答案】1010

【解析】

遞增數(shù)列{an}共有2019項(xiàng),且各項(xiàng)均不為零,a20191,可得0a1a2<…<a2019a20191,因此0a2019a2018a2019a2017<…<a2019a11,根據(jù)上述每項(xiàng)均在數(shù)列{an}中,可得a2019a2018a1,a2019a2017a2,…,a2019a1a2018,進(jìn)而得出答案.

∵遞增數(shù)列{an}共有2019項(xiàng),且各項(xiàng)均不為零,a20191

0a1a2<…<a2018a20191,

0a2019a2018a2019a2017<…<a2019a11,

且上述每項(xiàng)均在數(shù)列{an}中,

a2019a2018a1,

a2019a2017a2,

…,

a2019a1a2018

a2018+a1a2017+a2=…=a1+a2018a20191

數(shù)列{an}的各項(xiàng)和2S20192019+1

S20191010

故答案為:1010

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性并求當(dāng)時(shí)函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的方程范圍內(nèi)有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的方程為,其中常數(shù),是拋物線的焦點(diǎn).

(1)若直線被拋物線所截得的弦長(zhǎng)為6,求的值;

(2)設(shè)是點(diǎn)關(guān)于頂點(diǎn)的對(duì)稱點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最大值;

(3)設(shè),、是兩條互相垂直,且均經(jīng)過(guò)點(diǎn)的直線,與拋物線交于點(diǎn)、與拋物線交于點(diǎn)、,若點(diǎn)滿足,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐PABCD中,底面ABCD是直角梯形,AD//BCBC2AD,ADCDPD⊥平面ABCD,EPB的中點(diǎn).

(1)求證:AE//平面PDC;

(2)BCCDPD,求直線AC與平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),若對(duì)任意的,均有,求的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年中秋節(jié)到來(lái)之際,某超市為了解中秋節(jié)期間月餅的銷(xiāo)售量,對(duì)其所在銷(xiāo)售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購(gòu)買(mǎi)量單位:進(jìn)行了問(wèn)卷調(diào)查,得到如下頻率分布直方圖:

求頻率分布直方圖中a的值;

以頻率作為概率,試求消費(fèi)者月餅購(gòu)買(mǎi)量在的概率;

已知該超市所在銷(xiāo)售范圍內(nèi)有20萬(wàn)人,并且該超市每年的銷(xiāo)售份額約占該市場(chǎng)總量的,請(qǐng)根據(jù)這1000名消費(fèi)者的人均月餅購(gòu)買(mǎi)量估計(jì)該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場(chǎng)需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)若求函數(shù)的單調(diào)區(qū)間;

2)若試判斷函數(shù)在區(qū)間內(nèi)的極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

3)求證:對(duì)任意的正數(shù)a都存在實(shí)數(shù)t滿足:對(duì)任意的,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在,使得關(guān)于的不等式恒成立,則的取值范圍為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案