【題目】已知遞增數(shù)列共有2019項(xiàng),且各項(xiàng)均不為零,,若從數(shù)列中任取兩項(xiàng),,當(dāng)時(shí),仍是數(shù)列中的項(xiàng),則數(shù)列中的各項(xiàng)和______.
【答案】1010
【解析】
遞增數(shù)列{an}共有2019項(xiàng),且各項(xiàng)均不為零,a2019=1,可得0<a1<a2<…<a2019<a2019=1,因此0<a2019﹣a2018<a2019﹣a2017<…<a2019﹣a1<1,根據(jù)上述每項(xiàng)均在數(shù)列{an}中,可得a2019﹣a2018=a1,a2019﹣a2017=a2,…,a2019﹣a1=a2018,進(jìn)而得出答案.
∵遞增數(shù)列{an}共有2019項(xiàng),且各項(xiàng)均不為零,a2019=1,
∴0<a1<a2<…<a2018<a2019=1,
∴0<a2019﹣a2018<a2019﹣a2017<…<a2019﹣a1<1,
且上述每項(xiàng)均在數(shù)列{an}中,
∴a2019﹣a2018=a1,
a2019﹣a2017=a2,
…,
a2019﹣a1=a2018.
即a2018+a1=a2017+a2=…=a1+a2018=a2019=1.
數(shù)列{an}的各項(xiàng)和2S2019=2019+1.
S2019=1010.
故答案為:1010.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性并求當(dāng)時(shí)函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程在范圍內(nèi)有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的方程為,其中常數(shù),是拋物線的焦點(diǎn).
(1)若直線被拋物線所截得的弦長(zhǎng)為6,求的值;
(2)設(shè)是點(diǎn)關(guān)于頂點(diǎn)的對(duì)稱點(diǎn),是拋物線上的動(dòng)點(diǎn),求的最大值;
(3)設(shè),、是兩條互相垂直,且均經(jīng)過(guò)點(diǎn)的直線,與拋物線交于點(diǎn)、,與拋物線交于點(diǎn)、,若點(diǎn)滿足,求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E為PB的中點(diǎn).
(1)求證:AE//平面PDC;
(2)若BC=CD=PD,求直線AC與平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對(duì)任意的,均有,求的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年中秋節(jié)到來(lái)之際,某超市為了解中秋節(jié)期間月餅的銷(xiāo)售量,對(duì)其所在銷(xiāo)售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購(gòu)買(mǎi)量單位:進(jìn)行了問(wèn)卷調(diào)查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費(fèi)者月餅購(gòu)買(mǎi)量在的概率;
已知該超市所在銷(xiāo)售范圍內(nèi)有20萬(wàn)人,并且該超市每年的銷(xiāo)售份額約占該市場(chǎng)總量的,請(qǐng)根據(jù)這1000名消費(fèi)者的人均月餅購(gòu)買(mǎi)量估計(jì)該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場(chǎng)需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若求函數(shù)的單調(diào)區(qū)間;
(2)若試判斷函數(shù)在區(qū)間內(nèi)的極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(3)求證:對(duì)任意的正數(shù)a都存在實(shí)數(shù)t滿足:對(duì)任意的,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
討論函數(shù)的單調(diào)性;
設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;
求證:當(dāng)時(shí),
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com