5.已知橢圓C:$\frac{x^2}{16}$+$\frac{y^2}{n}$=1(0<n<16)的兩個焦點分別為F1,F(xiàn)2,過F1的直線交橢圓C于A,B兩點,若|AF2|+|BF2|的最大值為10,則n的值為( 。
A.15B.14C.13D.12

分析 由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=16-|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當AB垂直于x軸時|AB|最小,把|AB|的最小值 $\frac{n}{2}$,代入|BF2|+|AF2|=16-|AB|,由|BF2|+|AF2|的最大值等于10,列式求n的值.,

解答 解:由0<n<16可知,焦點在x軸上,
由過F1的直線l交橢圓于A,B兩點,
由橢圓的定義可得|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=16,
即有|BF2|+|AF2|=16-|AB|.
當AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,
此時|AB|=$\frac{2^{2}}{a}$=$\frac{2n}{4}$=$\frac{n}{2}$,
即為10=16-$\frac{n}{2}$,
解得n=12.
故選:D.

點評 本題考查了直線與圓錐曲線的關系,考查了橢圓的定義,解答此題的關鍵是明確過橢圓焦點的弦中通徑的長最短,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,b≠c,且sin2C-sin2B=$\sqrt{3}$sinBcosB-$\sqrt{3}$sinCcosC.
(1)求角A的大;
(2)若a=$\sqrt{3}$,sinC=$\frac{3}{4}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=2x2-e|x|在[-2,2]的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x||x|<2},B={-1,0,1,2,3},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知A(2,5),B(4,1).若點P(x,y)在線段AB上,則2x-y的最大值為( 。
A.-1B.3C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.將函數(shù)f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}}$)圖象上每一點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移$\frac{π}{6}$個單位長度得到y(tǒng)=cosx的圖象,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(  )
A.[kπ-$\frac{2π}{3}$,kπ+$\frac{π}{3}}$](k∈Z)B.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}}$](k∈Z)
C.[4kπ-$\frac{7π}{3}$,kπ-$\frac{π}{3}}$](k∈Z)D.[4kπ-$\frac{π}{3}$,kπ+$\frac{5π}{3}}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若直線2mx-ny-2=0(m>0,n>0)過點(1,-2),則$\frac{1}{m}$+$\frac{2}{n}$最小值( 。
A.2B.6C.12D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知一組數(shù)據(jù)4.7,4.8,5.1,5.4,5.5,則該組數(shù)據(jù)的方差是0.1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+1)的切線,則b=1-ln2.

查看答案和解析>>

同步練習冊答案