15.若直線y=kx+b是曲線y=lnx+2的切線,也是曲線y=ln(x+1)的切線,則b=1-ln2.

分析 先設切點,然后利用切點來尋找切線斜率的聯(lián)系,以及對應的函數(shù)值,綜合聯(lián)立求解即可

解答 解:設y=kx+b與y=lnx+2和y=ln(x+1)的切點分別為(x1,kx1+b)、(x2,kx2+b);
由導數(shù)的幾何意義可得k=$\frac{1}{{x}_{1}}$=$\frac{1}{{x}_{2}+1}$,得x1=x2+1
再由切點也在各自的曲線上,可得$\left\{\begin{array}{l}{k{x}_{1}+b=ln{x}_{1}+2}\\{k{x}_{2}+b=ln{(x}_{2}+1)}\end{array}\right.$
聯(lián)立上述式子解得$\left\{\begin{array}{l}{k=2}\\{{x}_{1}=\frac{1}{2}}\\{{x}_{2}=-\frac{1}{2}}\end{array}\right.$;
從而kx1+b=lnx1+2得出b=1-ln2.

點評 本題考查了導數(shù)的幾何意義,體現(xiàn)了方程思想,對學生綜合計算能力有一定要求,中檔題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知橢圓C:$\frac{x^2}{16}$+$\frac{y^2}{n}$=1(0<n<16)的兩個焦點分別為F1,F(xiàn)2,過F1的直線交橢圓C于A,B兩點,若|AF2|+|BF2|的最大值為10,則n的值為( 。
A.15B.14C.13D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求證:
(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|-|2x-3|.
(Ⅰ)在圖中畫出y=f(x)的圖象;
(Ⅱ)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若cos($\frac{π}{4}$-α)=$\frac{3}{5}$,則sin2α=( 。
A.$\frac{7}{25}$B.$\frac{1}{5}$C.-$\frac{1}{5}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在直角坐標系xOy中,圓C的方程為(x+6)2+y2=25.
(Ⅰ)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求C的極坐標方程;
(Ⅱ)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),l與C交與A,B兩點,|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設F為拋物線C:y2=4x的焦點,曲線y=$\frac{k}{x}$(k>0)與C交于點P,PF⊥x軸,則k=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$.
①若a=0,則f(x)的最大值為2;
②若f(x)無最大值,則實數(shù)a的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若變量x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,則x2+y2的最大值是(  )
A.4B.9C.10D.12

查看答案和解析>>

同步練習冊答案