分析 先設切點,然后利用切點來尋找切線斜率的聯(lián)系,以及對應的函數(shù)值,綜合聯(lián)立求解即可
解答 解:設y=kx+b與y=lnx+2和y=ln(x+1)的切點分別為(x1,kx1+b)、(x2,kx2+b);
由導數(shù)的幾何意義可得k=$\frac{1}{{x}_{1}}$=$\frac{1}{{x}_{2}+1}$,得x1=x2+1
再由切點也在各自的曲線上,可得$\left\{\begin{array}{l}{k{x}_{1}+b=ln{x}_{1}+2}\\{k{x}_{2}+b=ln{(x}_{2}+1)}\end{array}\right.$
聯(lián)立上述式子解得$\left\{\begin{array}{l}{k=2}\\{{x}_{1}=\frac{1}{2}}\\{{x}_{2}=-\frac{1}{2}}\end{array}\right.$;
從而kx1+b=lnx1+2得出b=1-ln2.
點評 本題考查了導數(shù)的幾何意義,體現(xiàn)了方程思想,對學生綜合計算能力有一定要求,中檔題
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | 14 | C. | 13 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | $\frac{1}{5}$ | C. | -$\frac{1}{5}$ | D. | -$\frac{7}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com