10.若直線ax-by+1=0(a>0,b>0)分圓C:x2+y2+2x-4y+1=0的周長(zhǎng),則ab的取值范圍是( 。
A.(-∞,$\frac{1}{8}$]B.(0,$\frac{1}{8}$]C.(0,$\frac{1}{4}$]D.[$\frac{1}{4}$,+∞)

分析 依題意知直線ax-by+1=0過圓C的圓心(-1,2),故有a+2b=1,再利用ab=(1-2b)b=-2(b-$\frac{1}{4}$)2+$\frac{1}{8}$≤$\frac{1}{8}$,求得ab的取值范圍.

解答 解:∵直線ax-by+1=0平分圓C:x2+y2+2x-4y+1=0的周長(zhǎng),
∴直線ax-by+1=0過圓C的圓心(-1,2),
∴有a+2b=1,
∴ab=(1-2b)b=-2(b-$\frac{1}{4}$)2+$\frac{1}{8}$≤$\frac{1}{8}$,
∵a>0,b>0,
∴ab的取值范圍是(0,$\frac{1}{8}$].
故選:B.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,配方法的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列隨機(jī)事件模型屬于古典概型的有幾個(gè)(  )
(1)在平面直角坐標(biāo)系內(nèi),從橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的所有點(diǎn)中任取一點(diǎn)
(2)某射手射擊一次,可能命中0環(huán)、1環(huán)、2環(huán)…,10環(huán).
(3)一個(gè)小組有男生5人,女生3人,從中任選1人進(jìn)行活動(dòng)匯報(bào).
(4)一只使用中的燈泡的壽命長(zhǎng)短.
(5)拋出一枚質(zhì)地均勻的硬幣,觀察其出現(xiàn)正面或反面的情況.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.圓內(nèi)兩條相交弦長(zhǎng),其中一弦長(zhǎng)為8cm,且被交點(diǎn)平分,另一條弦被交點(diǎn)分成1:4兩部分,則這條弦長(zhǎng)是( 。
A.2cmB.8cmC.10cmD.12cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x+3)的定義域?yàn)閇-5,-2],則F(x)=f(x+1)•f(x-1)定義域?yàn)椋ā 。?table class="qanwser">A.[-3,2]B.[-7,-6]C.[-9,-4]D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.經(jīng)過點(diǎn)(-1,1),斜率是直線y=$\frac{\sqrt{2}}{2}$x-2的斜率的2倍的直線方程是( 。
A.x=-1B.y=1C.y-1=$\sqrt{2}$(x+1)D.y-1=2$\sqrt{2}$(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F作圓x2+y2=a2的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線于點(diǎn)P,O為坐標(biāo)原點(diǎn),若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),則雙曲線的離心率為( 。
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.對(duì)于正整數(shù)n,定義“n!!”如下:當(dāng)n為偶數(shù)時(shí),n!!=n•(n-2)•(n-4)…6•4•2;當(dāng)n為奇數(shù)時(shí),n!!=n•(n-2)•(n-4)…5•3•1;則:
①(2005!!)•(2004!!)=2005!;
②2004!!=21002•1002!;
③2004!!的個(gè)位數(shù)是0;
④2005!!的個(gè)位數(shù)是5;
上述命題中,正確的命題有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.為美化環(huán)境,某市計(jì)劃在以A、B兩地為直徑的半圓弧$\widehat{AB}$上選擇一點(diǎn)C建造垃圾處理廠(如圖所示).已知A、B兩地的距離為10km,垃圾場(chǎng)對(duì)某地的影響度與其到該地的距離關(guān),對(duì)A、B兩地的總影響度為對(duì)A地的影響度和對(duì)B地影響度的和.記C點(diǎn)到A地的距離為xkm,垃圾處理廠對(duì)A、B兩地的總影響度為y.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)A地的影響度與其到A地距離的平方成反比,比例系數(shù)為$\frac{3}{2}$;對(duì)B地的影響度與其到B地的距離的平方成反比,比例系數(shù)為k.當(dāng)垃圾處理廠建在弧$\widehat{AB}$的中點(diǎn)時(shí),對(duì)A、B兩地的總影響度為0.15.
(Ⅰ)將y表示成x的函數(shù);
(Ⅱ)判斷弧$\widehat{AB}$上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)A、B兩地的總影響度最小?若存在,求出該點(diǎn)到A地的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x3+ax2+bx+c,當(dāng)x=-1時(shí),f(x)的極大值為7;當(dāng)x=3時(shí),f(x)有極小值.
求(1)a,b,c的值;
(2)函數(shù)f(x)的極小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案