【題目】已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.

1)試用含有的式子表示,并討論的單調(diào)性;

2)對(duì)于函數(shù)圖象上的不同兩點(diǎn),如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在跟隨切線”.特別地,當(dāng)時(shí),又稱存在中值跟隨切線”.試問(wèn):函數(shù)上是否存在兩點(diǎn)使得它存在中值跟隨切線,若存在,求出的坐標(biāo),若不存在,說(shuō)明理由.

【答案】1,單調(diào)性見(jiàn)解析;(2)不存在,理由見(jiàn)解析

【解析】

1)由題意得,即可得;求出函數(shù)的導(dǎo)數(shù),再根據(jù)、、分類討論,分別求出、的解集即可得解;

2)假設(shè)滿足條件的、存在,不妨設(shè),,由題意得可得,令),構(gòu)造函數(shù)),求導(dǎo)后證明即可得解.

1)由題可得函數(shù)的定義域?yàn)?/span>,

,整理得.

.

(。┊(dāng)時(shí),易知,時(shí).

上單調(diào)遞增,在上單調(diào)遞減.

(ⅱ)當(dāng)時(shí),令,解得,則

①當(dāng),即時(shí),上恒成立,則上遞增.

②當(dāng),即時(shí),當(dāng)時(shí),;

當(dāng)時(shí),.

所以上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.

③當(dāng),即時(shí),當(dāng)時(shí),;當(dāng)時(shí),.

所以上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.

綜上,當(dāng)時(shí),上單調(diào)遞增,在單調(diào)遞減.

當(dāng)時(shí),上單調(diào)遞增;上單調(diào)遞減.

當(dāng)時(shí),上遞增.

當(dāng)時(shí),上單調(diào)遞增;上遞減.

2)滿足條件的、不存在,理由如下:

假設(shè)滿足條件的存在,不妨設(shè),,

,

由題可知,整理可得:,

),構(gòu)造函數(shù).

,

所以上單調(diào)遞增,從而,

所以方程無(wú)解,即無(wú)解.

綜上,滿足條件的A、B不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】超級(jí)病菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來(lái)越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n)份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:

1)逐份檢驗(yàn),則需要檢驗(yàn)n次;

2)混合檢驗(yàn),將其中k)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次,假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)2次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率;

2)現(xiàn)取其中k)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

i)試運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求p關(guān)于k的函數(shù)關(guān)系式;

ii)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.

參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=aexgx=lnx-lna,其中a為常數(shù),且曲線y=fx)在其與y軸的交點(diǎn)處的切線記為l1,曲線y=gx)在其與x軸的交點(diǎn)處的切線記為l2,且l1l2

1)求l1,l2之間的距離;

2)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍;

3)對(duì)于函數(shù)fx)和gx)的公共定義域中的任意實(shí)數(shù)x0,稱|fx0-gx0|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)fx)和gx)在其公共定義域內(nèi)的所有偏差都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書(shū)中,用圖①的數(shù)表列出了一些正整數(shù)在三角形中的一種幾何排列,俗稱“楊輝三角形”,該數(shù)表的規(guī)律是每行首尾數(shù)字均為,從第三行開(kāi)始,其余的數(shù)字是它“上方”左右兩個(gè)數(shù)字之和,F(xiàn)將楊輝三角形中的奇數(shù)換成,偶數(shù)換成,得到圖②所示的由數(shù)字組成的三角形數(shù)表,由上往下數(shù),記第行各數(shù)字的和為,如,則____________

① ②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 設(shè)橢圓的左焦點(diǎn)為,左頂點(diǎn)為,頂點(diǎn)為B.已知為原點(diǎn)).

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓在軸上方的交點(diǎn)為,圓同時(shí)與軸和直線相切,圓心在直線上,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)試討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書(shū)、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開(kāi)展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開(kāi)安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正四面體底面的中心為,的重心為.內(nèi)部一動(dòng)點(diǎn)(包括邊界),滿足,,不共線且點(diǎn)到點(diǎn)的距離與到平面的距離相等.

1)證明:平面;

2)若,求四面體體積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案