已知在(
x
+
1
2
3x
n的展開式中,只有第6項的二項式系數(shù)最大.
(1)求n;  
(2)求展開式中含x4項.
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:(1)由條件利用二項式系數(shù)的性質(zhì)求得n=10.
(2)先求出二項式展開式的通項公式,再令x的冪指數(shù)等于4,求得r的值,即可求得展開式中含x4項.
解答: 解:(1)因為展開式中只有第6項的二項式系數(shù)最大,所以n為偶數(shù),第6項即為中間項,
n
2
+1=6,求得n=10.
(2)(
x
+
1
2
3x
n=(
x
+
1
2
3x
10的展開式的通項是 Tr+1=
C
r
10
•2-rx5-
r
6
,
令5-
r
6
=,求得r=6,故展開式中含x4項為
C
6
10
•x4=
105
32
x4
點評:本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,求展開式中某項的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,c滿足a+b+c=2,a2+b2+c2=4,且a>b>c,不等式ln(a2+2a)-a≥M恒成立,則M的最大值是(  )
A、ln
40
9
-
4
3
B、ln
16
9
-
2
3
C、ln(8+4
2
)-2
2
D、ln8-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3sin2θ-8sinθcosθ+4cos2θ=0
求:(1)tanθ;
(2)若θ∈(
π
4
,
π
2
),求
1+2sin2θ
cos2θ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,動點P(ρ,θ)運(yùn)動時,ρ與sin2(
θ
2
+
π
4
)
成反比,動點P的軌跡經(jīng)過點(2,0)
(I)求動點P的軌跡其極坐標(biāo)方程.
(II)以極點為直角坐標(biāo)系原點,極軸為x軸正半軸建立直角坐標(biāo)系,將(I)中極坐標(biāo)方程化為直角坐標(biāo)方程,并說明所得點P軌跡是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=lnx,g(x)=af(x)+f′(x),
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時,比較g(x)與g(
1
x
)
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換
已知二階矩陣M有特征值λ1=4及屬于特征值4的一個特征向量
e1
=(
 
2
3
),并有特征值λ2=-1及屬于特征值-1的一個特征向量
e2
=(
 
1
-1
),
α
=(
 
-1
1
).
(1)求矩陣M;
(2)求M5α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足|z|=1,且(3+4i)z是純虛數(shù),求
1+i
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,圓O的參數(shù)方程為
x=-
2
+rcosθ
y=-1+rsinθ
,(θ為參數(shù),r>0)以O(shè)為極點,x軸正半軸為極軸,并取相同的單位長度建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2

(Ⅰ)寫出直線l和圓O的普通方程;
(Ⅱ)并求出r為何值時,直線l與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
)+cos2x
(1)求f(x)的最小正周期T;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案