已知函數(shù)f(x)=
1
3
x3+3xf′(a),f(a)=
7
6
,則a=
 
考點:導數(shù)的運算,函數(shù)的零點
專題:導數(shù)的概念及應用
分析:求函數(shù)的導數(shù),建立方程進行求解即可.
解答: 解:函數(shù)的f(x)的導數(shù)f′(x)=x2+3f′(a),
則f′(a)=a2+3f′(a),
解得f′(a)=-
1
2
a2,
則f(x)=
1
3
x3-
3
2
a2x,
∵f(a)=
7
6
,
∴f(a)=
1
3
a3-
3
2
a3=
7
6
,
即-
7
6
a3=
7
6
,
a3=-1,
解得a=-1,
故答案為:-1
點評:本題主要考查導數(shù)的計算,要求熟練掌握掌握常見函數(shù)的導數(shù)公式,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設α1=-570°,α2=750°,β1=
5
,β2=-
π
3

(1)將α1,α2用弧度制表示出來并指出它們各自的終邊所在的象限;
(2)將β1,β2用角度制表示出來,并在-720°~0°范圍內找出它們終邊相同的所有角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內接于圓O,點D在OC的延長線上,AD切圓O于A,若∠ABC=30°,AC=2,則AD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+1,點(n+1,
an+1
an
)(n∈N+)在y=f-1(x)上,且a1=a2=1.
(1)求數(shù)列{an}的通項公式;
(2)設Sn=
a1
2!
+
a2
3!
+…+
an
(n+1)!
,若Sn>m恒成立,求常數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是偶函,又在[0,1]上單調遞增的是( 。
A、y=cosx
B、y=-x2
C、y=sinxcos2x
D、y=|sinx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2x,1)
,向量
b
=(-4,2)
,若
a
b
,則
a
+
b
為(  )
A、(-2,2)
B、(-6,3)
C、(2,-1)
D、(6,-3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=
1
2
x與拋物線y2=2px(p>0)交于O,A兩點(F為拋物線的焦點,O為坐標原點),若|AF|=17,求OA的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四面體的四個面的面積分別為S1、S2、S3、S4,記其中最大的面積為S,則
4
i-1
Si
3S
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=a-bsin(3x+
π
6
)的最大值為
3
2
,最小值為-
1
2
,則a=
 
,b=
 

查看答案和解析>>

同步練習冊答案