已知橢圓的長軸長為4,且點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓右焦點(diǎn)的直線l交橢圓于A,B兩點(diǎn),若以AB為直徑的圓過原點(diǎn),求直線l方程.
解:(Ⅰ)由題意:,.所求橢圓方程為. 又點(diǎn)在橢圓上,可得.所求橢圓方程為 4分 (Ⅱ)由(Ⅰ)知,所以,橢圓右焦點(diǎn)為. 因?yàn)橐?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/4941/0020/fc64909b792b6e2801be321b7f4506c1/C/Image117.gif" width=26 HEIGHT=17>為直徑的圓過原點(diǎn),所以. 若直線的斜率不存在,則直線的方程為. 直線AB交橢圓于兩點(diǎn),,不合題意. 若直線的斜率存在,設(shè)斜率為,則直線的方程為. 由可得. 由于直線過橢圓右焦點(diǎn),可知.
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(13分)已知橢圓的長軸長為4,A,B,C是橢圓上的三點(diǎn),點(diǎn)A是長軸的一個(gè)頂點(diǎn),BC過橢圓的中心O,且,,如圖.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果橢圓上的兩點(diǎn)P,Q使的平分線垂直于OA,是否總存在實(shí)數(shù),使得?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知橢圓的長軸長為4。 (1)若以原點(diǎn)為圓心、橢圓短半軸為半徑的圓與直線相切,求橢圓焦點(diǎn)坐標(biāo); (2)若點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),記直線PM,PN的斜率分別為,當(dāng)時(shí),求橢圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期期中文科數(shù)學(xué)A試卷(解析版) 題型:解答題
已知橢圓的長軸長為4,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過點(diǎn),且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動(dòng)圓圓心的軌跡方程;
(Ⅱ) 在曲線上有兩點(diǎn),橢圓上有兩點(diǎn),滿足與共線,
與共線,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省、莊河高中高三上學(xué)期期末理科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知橢圓的長軸長為4,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過點(diǎn),且與直線相切.
(Ⅰ)(。┣髾E圓的方程; (ⅱ)求動(dòng)圓圓心軌跡的方程;
(Ⅱ) 在曲線上有兩點(diǎn),橢圓上有兩點(diǎn),滿足與共線,與共線,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年安徽省蕪湖十二中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com