11.在約束條件$\left\{\begin{array}{l}2x+y-2≥0\\ x-3y+6≥0\\ 3x-2y-3≤0\end{array}\right.$下,目標函數(shù)z=|x-y+4|的最大值為5.

分析 畫出滿足條件的平面區(qū)域,結(jié)合圖象求出|z|的最大值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

由z=|x-y+4|,得:y=x+4±z,
結(jié)合圖象:若4±z=2,則,|z|=2,
若4±z=-1,則|z|=5,
故答案為:5.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知集合A={-1,3,m2},B={3,2m-1},若B⊆A,則m=0或1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.一個三角形的三條邊長分別為7,5,3,它的外接圓半徑是$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.不等式ax2+bx+1>0的解集是(-$\frac{1}{2}$,$\frac{1}{3}$),則a-b=( 。
A.-7B.7C.-5D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列函數(shù)中,既是偶函數(shù),又在(-∞,0)上單調(diào)遞減的是(  )
A.$y=\frac{1}{x}$B.y=e-xC.y=1-x2D.y=x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=loga(x-1)-1(a>0且a≠1)必過定點(2,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求解下列各式的值:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+(-2017)0+(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$;
(2)$\sqrt{l{g}^{2}\frac{1}{3}-4lg3+4}$+lg6-lg0.02.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)當a>0時,用作差法證明:f($\frac{x_1+x_2}{2}$)<$\frac{1}{2}$[f(x1)+f(x2)];
(2)已知當x∈[0,1]時,|f(x)|≤1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.“a=2”是“函數(shù)f(x)=x2-3ax-2在區(qū)間(-∞,-2]內(nèi)單調(diào)遞減”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

同步練習冊答案