9.在四次獨(dú)立重復(fù)試驗(yàn)中,事件A在每次試驗(yàn)中出現(xiàn)的概率相同,若事件A至少發(fā)生一次的概率為$\frac{65}{81}$,則事件A恰好發(fā)生一次的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{32}{81}$D.$\frac{8}{81}$

分析 先求出事件A在每次試驗(yàn)中出現(xiàn)的概率為P的值,再根據(jù)n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率公式,求得事件A恰好發(fā)生一次的概率.

解答 解:設(shè)事件A在每次試驗(yàn)中出現(xiàn)的概率為P,則由題意可得1-(1-p)4=$\frac{65}{81}$,∴P=$\frac{1}{3}$,
故事件A恰好發(fā)生一次的概率為${C}_{4}^{1}$•$\frac{1}{3}$•${(\frac{2}{3})}^{3}$=$\frac{32}{81}$,
故選:C.

點(diǎn)評(píng) 本題考查相互獨(dú)立事件的概率乘法公式及n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率公式,所求的事件的概率與它的對(duì)立事件的概率之間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為正方形,延長AB到D,使得AB=BD,平面AA1C1C⊥平面ABB1A1,A1C1=$\sqrt{2}$AA1,∠C1A1A=$\frac{π}{4}$.
(Ⅰ)若E,F(xiàn)分別為C1B1,AC的中點(diǎn),求證:EF∥平面ABB1A1;
(Ⅱ)求平面A1B1C1與平面CB1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

已知直線的方向向量,直線的方向向量,若,且,則的值是( )

A.-3或1 B.3或-1 C.-3 D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若10b1(2)=a02(3),則數(shù)字a+b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知點(diǎn)P在圓柱OO1的底面圓O上,AB為圓O的直徑,圓柱的側(cè)面積為16π
,OA=2,∠AOP=120°.試求三棱錐A1-APB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式${(\frac{1}{2})^{2{x^2}+x-1}}$>1的解集是(-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點(diǎn).
(1)證明:CD⊥平面PAE;
(2)若直線PB與平面PAE所成的角和直線PB與平面ABCD所成的角相等,求二面角P-CD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|(x+2)(x-3)<0},B={-1,0,1,2,3},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知隨機(jī)變量ξ服從正態(tài)分布 N(2,σ2),P(ξ≥4)=0.16,則 P(ξ≤0)=( 。
A.0.16B.0.32C.0.68D.0.84

查看答案和解析>>

同步練習(xí)冊(cè)答案