分析 (Ⅰ)取A1C1的中點(diǎn)G,連結(jié)FG,EG,則EG∥A1B1,從而GE∥ABB1A1,同理得GF∥平面ABB1A1,從平面GEF∥平面ABB1A1,由此能證明EF∥平面ABB1A1.
(Ⅱ)連結(jié)AC1,推導(dǎo)出AC1⊥AA1,從而AC1⊥平面ABB1A1,再求出AC1⊥AB,AA1⊥AB,分別以AA1,AB,AC1所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面A1B1C1與平面CB1D所成的銳二面角的余弦值.
解答 證明:(Ⅰ)取A1C1的中點(diǎn)G,連結(jié)FG,EG,
在△A1B1C1中,EG為中位線,∴EG∥A1B1,
∴GE?平面ABB1A1,A1B1?平面ABB1A1,
∴GE∥ABB1A1,同理得GF∥平面ABB1A1,
又GF∩GE=G,∴平面GEF∥平面ABB1A1,
∵EF?平面GEF,∴EF∥平面ABB1A1.
解:(Ⅱ)連結(jié)AC1,在△AA1C1中,$∠{C}_{1}{A}_{1}A=\frac{π}{4}$,${A}_{1}{C}_{1}=\sqrt{2}A{A}_{1}$,
∴由余弦定理得$A{{C}_{1}}^{2}$=$A{{A}_{1}}^{2}$+${A}_{1}{{C}_{1}}^{2}$-2AA1×A1C1cos∠AA1C1=$A{{A}_{1}}^{2}$,
∴AA1=AC1,△A1AC1是等腰直角三角形,AC1⊥AA1,
又∵平面AA1C1C∩平面ABB1A1=AA1,
∴AC1⊥平面ABB1A1,
∵AB?平面ABB1A1,∴AC1⊥AB,
又∵側(cè)面ABB1A1為正方形,∴AA1⊥AB,
分別以AA1,AB,AC1所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
設(shè)AB=1,則A(0,0,0),A1(1,0,0),B1(1,1,0),
C1(0,0,1),C(-1,0,1),D(0,2,0),
∴$\overrightarrow{C{B}_{1}}$=(2,1,-1),$\overrightarrow{CD}$=(1,2,-1),$\overrightarrow{{A}_{1}{C}_{1}}$=(-1,0,1),$\overrightarrow{{A}_{1}{B}_{1}}$=(0,1,0),
設(shè)平面A1B1C1的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}{C}_{1}}=-x+z=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}{B}_{1}}=y=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,0,1),
設(shè)平面CB1D的法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{B}_{1}}=2a+b-c=0}\\{\overrightarrow{n}•\overrightarrow{CD}=a+2b-c=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,1,3),
cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{4}{\sqrt{2}×\sqrt{11}}$=$\frac{2\sqrt{22}}{11}$,
∴平面A1B1C1與平面CB1D所成的銳二面角的余弦值為$\frac{2\sqrt{22}}{11}$.
點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{3\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{32}{81}$ | D. | $\frac{8}{81}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com