18.已知x≥0,y≥0,x2+y2=4,μ=x•y-4(x+y)+10,μ的最值情況是( 。
A.有最大值2,最小值2(2-$\sqrt{2}$)2B.有最大值2,最小值0
C.有最大值10,最小值2(2-$\sqrt{2}$)2D.最值不存在

分析 先分析解析式的幾何意義,結(jié)合換元,得到t的范圍,換元后配方,得到最值.

解答 解:∵x≥0,y≥0,
∴x2+y2=4,可以看做一個$\frac{1}{4}$圓,
令t=x+y,要與圓有交點,得到2≤t≤2$\sqrt{2}$,
∵μ=x•y-4(x+y)+10=$\frac{{t}^{2}-4}{2}$-4t+10
=$\frac{1}{2}$t2-4t+8
=$\frac{1}{2}$(t-4)2
∵2≤t≤2$\sqrt{2}$,
∴μ的最值情況是2(2-$\sqrt{2}$)2≤μ≤2.
故選:A.

點評 本題考查幾何意義以及換元思想,和二次函數(shù)求最值,是綜合性題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.雙曲線E與橢圓C:$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{3}$=1有相同焦點,且以E的一個焦點為圓心與雙曲線的漸近線相切的圓的面積為π,則E的離心率為(  )
A.e=$\sqrt{2}$B.e=$\frac{\sqrt{6}}{2}$C.e=$\frac{\sqrt{30}}{5}$D.e=$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.下列關(guān)于算法的說法,正確的序號是(2)、(3)、(4).
(1)一個問題的算法是唯一的;
(2)算法的操作步驟是有限的;
(3)算法的每一步操作必須是明確的,不能有歧義;
(4)算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.雙曲線過點(4,$\sqrt{3}$)、(3,$\frac{{\sqrt{5}}}{2}$),則雙曲線的標準方程為$\frac{x^2}{4}-{y^2}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)正項等比數(shù)列{an}的前n項和為Sn,記bn=$\frac{{{a}_{n+1}}^{2}}{{a}_{n}}$.且數(shù)列{bn}的前n項和為Tn
(1)求證:{bn}是等比數(shù)列;
(2)若Sn<Tn恒成立,求等比數(shù)列{an}公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知在平面直角坐標系xOy中曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ.\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t.\end{array}\right.$(t為參數(shù)),曲線C與直線l相交于點A,B,且定點P的坐標為(1,0).
(Ⅰ)求曲線C的普通方程;
(Ⅱ)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知定義域為R的函數(shù)f(x)滿足f(x+1)=2f(x),當x∈(1,2]時,f(x)=x2-x,則f(x)在x∈(-2,-1]上的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.記函數(shù)f(x)=lg(x2-1)的定義域為A,g(x)=$\sqrt{(x-a-1)(2a-x)}$(其中a<1)的定義域為B.
(1)求A;
(2)若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.直線kx-y+1-2k=0,當k變動時,所有直線都過定點(  )
A.(0,0)B.(0,1)C.(3,1)D.(2,1)

查看答案和解析>>

同步練習冊答案