精英家教網 > 高中數學 > 題目詳情
6.雙曲線過點(4,$\sqrt{3}$)、(3,$\frac{{\sqrt{5}}}{2}$),則雙曲線的標準方程為$\frac{x^2}{4}-{y^2}=1$.

分析 由題意,設雙曲線方程為mx2+ny2=1,代入點的坐標,建立方程組,求出m,n,即可求出雙曲線的標準方程.

解答 解:由題意,設雙曲線方程為mx2+ny2=1,代入點(4,$\sqrt{3}$)、(3,$\frac{{\sqrt{5}}}{2}$),
得$\left\{\begin{array}{l}{16m+3n=1}\\{9m+\frac{5}{4}n=1}\end{array}\right.$,
解得m=$\frac{1}{4},n=-1$.
∴雙曲線的標準方程為$\frac{x^2}{4}-{y^2}=1$.
故答案為:$\frac{x^2}{4}-{y^2}=1$.

點評 本題考查雙曲線的標準方程,考查待定系數法的運用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

16.復數z滿足(1+2i)•z=|1+2i|,則z的共軛復數$\overrightarrow{z}$的虛部為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.設復數z滿足(2-i)z=5i(i為虛數單位),則復數z在復平面內對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.命題“有些實數的絕對值是正數”的否定是所有實數的絕對值不是正數.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知拋物線y=ax2+bx+c通過點P(1,1),且在點Q(2,-1)處的切線平行于直線y=x-3,則拋物線方程為( 。
A.y=3x2-11x+9B.y=3x2+11x+9C.y=3x2-11x-9D.y=-3x2-11x+9

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.由正數組成的集合A具有如下性質:若a∈A,b∈A且a<b,那么1+$\frac{a}$∈A.
(1)試問集合A能否恰有兩個元素且$\frac{4}{3}$∈A?若能,求出所有滿足條件的集合A;若不能,請說明理由.
(2)試問集合A能否恰有三個元素?若能,請寫出一個這樣的集合A;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知x≥0,y≥0,x2+y2=4,μ=x•y-4(x+y)+10,μ的最值情況是(  )
A.有最大值2,最小值2(2-$\sqrt{2}$)2B.有最大值2,最小值0
C.有最大值10,最小值2(2-$\sqrt{2}$)2D.最值不存在

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.設f(x)是定義在R上的奇函數,且x>0時,f(x)=x2+1,則f(0)=0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)=ax3+bx2+cx,(a≠0).
(1)若函數f(x)有三個零點x1,x2,x3且x1+x2+x3=$\frac{9}{2}$,x1x3=-12,求函數f(x)的單調區(qū)間;
(2)若f′(1)=-$\frac{3}{2}$a,9a>2c>4b,試問:導函數f′(x)在區(qū)間(0,2)內是否有零點,并說明理由.
(3)在(2)的條件下,若導函數f′(x)的兩個零點之間的距離不小于$\sqrt{3}$,求$\frac{a}$的取值范圍.

查看答案和解析>>

同步練習冊答案