已知函數(shù)在其定義域上為奇函數(shù).
⑴求m的值;
⑵若關(guān)于x的不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
(1)m=7;(2)

試題分析:
(1)由是奇函數(shù)得:所以;然后對(duì)m=-7和m=7檢驗(yàn)即可;
(2)先由(1)及復(fù)合函數(shù)的單調(diào)性確定函數(shù)的單調(diào)性,再利用函數(shù)的奇偶性和單調(diào)性將已知不等式轉(zhuǎn)化為一般的代數(shù)不等式,最后用分離參數(shù)法,將不等式的恒成立問題轉(zhuǎn)化為函數(shù)的最值問題進(jìn)行解決.
試題解析:(1)由是奇函數(shù)得:所以;
當(dāng)m=-7時(shí),,舍去;
當(dāng)時(shí),,由得定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055452020426.png" style="vertical-align:middle;" />.
⑵設(shè)是增函數(shù),是增函數(shù).又為奇函數(shù),
,對(duì)任意實(shí)數(shù)恒成立;
對(duì)于,即
恒成立,在[2,3]上遞增,,則;
對(duì)于,在[2,3]上遞增,,則;
對(duì)于,即,則;
綜上,的取值范圍是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在上的三個(gè)函數(shù),,且處取得極值.
(1)求a的值及函數(shù)的單調(diào)區(qū)間.
(2)求證:當(dāng)時(shí),恒有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是定義在上的奇函數(shù),且,若時(shí),有
(1)證明上是增函數(shù);
(2)解不等式
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)判定并證明函數(shù)的奇偶性;
(2)試證明在定義域內(nèi)恒成立;
(3)當(dāng)時(shí),恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域是,且滿足,,
如果對(duì)于,都有.
(1)求;
(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=lg(2x-3)的定義域?yàn)榧螦,函數(shù)g(x)=
2
x-1
-1
的定義域?yàn)榧螧.求:
(I)集合A,B;
(II)A∩B,A∪CUB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的增區(qū)間是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,既是奇函數(shù),又在上是減函數(shù)的是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3+3x對(duì)任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x的取值范圍為________.

查看答案和解析>>

同步練習(xí)冊答案