【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.
(1)求角C的大。
(2)若c= ≤a,求2a﹣b的取值范圍.

【答案】
(1)解:由已知和正弦定理得:(a﹣c)(a+c)=b(a﹣b)

故a2﹣c2=ab﹣b2,故a2+b2﹣c2=ab,

,所以


(2)解:因為 ,

由正弦定理,

得a=2sinA,b=2sinB,

=

因為c≤a,所以 ,

所以


【解析】(1)利用正弦定理以及余弦定理,轉(zhuǎn)化求解即可.(2)利用正弦定理化簡2a﹣b的表達(dá)式,通過兩角和與差的三角函數(shù)化簡,結(jié)合角的范圍求解最值即可.
【考點精析】利用正弦定理的定義對題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 的圖象上相鄰兩對稱軸的距離為.

(1)若,求的遞增區(qū)間;

(2)若時,若的最大值與最小值之和為5,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足:對任意的x1 , x2∈(﹣∞,0),有 ,則(
A.f(﹣4)<f(3)<f(﹣2)
B.f(﹣2)<f(3)<f(﹣4)
C.f(3)<f(﹣2)<f(﹣4)
D.f(﹣4)<f(﹣2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的奇函數(shù),當(dāng)時, .

1)求的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某城市氣象部門的數(shù)據(jù)中,隨機抽取了100天的空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如表:

空氣質(zhì)量指數(shù)t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

(300,+∞)

質(zhì)量等級

優(yōu)

輕微污染

輕度污染

中度污染

嚴(yán)重污染

天數(shù)K

5

23

22

25

15

10


(1)在該城市各醫(yī)院每天收治上呼吸道病癥總?cè)藬?shù)y與當(dāng)天的空氣質(zhì)量t(t取整數(shù))存在如下關(guān)系y= ,且當(dāng)t>300時,y>500估計在某一醫(yī)院收治此類病癥人數(shù)超過200人的概率;
(2)若在(1)中,當(dāng)t>300時,y與t的關(guān)系擬合于曲線 ,現(xiàn)已取出了10對樣本數(shù)據(jù)(ti , yi)(i=1,2,3,…,10),且 =42500, =500,求擬合曲線方程. (附:線性回歸方程 =a+bx中,b= ,a= ﹣b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,那么( =;若E是AB的中點,P是△ABC(包括邊界)內(nèi)任一點.則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin xcos x+cos2x+a;則f(x)的最小正周期為 , 若f(x)在區(qū)間[﹣ , ]上的最大值與最小值的和為 ,則實數(shù)a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為S,a2+a6=20,S5=40.
(1)求{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}滿足b2=a3 , b3=a7.若b6=ak , 求k的值.

查看答案和解析>>

同步練習(xí)冊答案