國家公務(wù)員考試,某單位已錄用公務(wù)員5人,擬安排到A、B、C三個科室工作,但甲必須安排在A科室,其余4人可以隨機安排。
(1)求每個科室安排至少1人至多2人的概率; 
(2)設(shè)安排在A科室的人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

學(xué)校為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為,且各株大樹是否成活互不影響.
(Ⅰ)求移栽的4株大樹中恰有3株成活的概率;
(Ⅱ)設(shè)移栽的4株大樹中成活的株數(shù)為,求分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

六名學(xué)生需依次進行身體體能和外語兩個項目的訓(xùn)練及考核。每個項目只有一次補考機會,補考不合格者不能進入下一個項目的訓(xùn)練(即淘汰),若每個學(xué)生身體體能考核合格的概率是,外語考核合格的概率是,假設(shè)每一次考試是否合格互不影響。
①求某個學(xué)生不被淘汰的概率。
②求6名學(xué)生至多有兩名被淘汰的概率
③假設(shè)某學(xué)生不放棄每一次考核的機會,用表示其參加補考的次數(shù),求隨機變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

假設(shè)某次數(shù)學(xué)測試共有20道選擇題,每個選擇題都給了4個選項(其中有且僅有一個是正確的)。評分標準規(guī)定:每題只選1項,答對得5分,否則得0分。某考生每道題都給出了答案,并且會做其中的12道題,其他試題隨機答題,則他的得分X的方差DX=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.將編號為1,2,3的三個小球隨意放入編號為1,2,3的三個紙箱中,每個紙箱內(nèi)有且只有一個小球,稱此為一輪“放球”,設(shè)一輪“放球”后編號為i(i=1,2,3)的紙箱放入的小球編號為ai,定義吻合度誤差為=|1-a1|+|2-a2|+|3-a3|。假設(shè)a1,a2,a3等可能地為1、2、3的各種排列,求⑴某人一輪“放球”滿足=2時的概率。⑵的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲、乙兩人各射擊一次,擊中目標的概率分別是假設(shè)兩人射擊是否擊中目標,相互
之間沒有影響;每人各次射擊是否擊中目標,相互之間也沒有影響
(1)甲射擊3次,至少1次未擊中目標的概率;
(2)假設(shè)某人連續(xù)2次未擊中目標,則停止射擊,問:乙恰好射擊4次后,被中止射擊的概率是多少?
⑶設(shè)甲連續(xù)射擊3次,用表示甲擊中目標時射擊的次數(shù),求的數(shù)學(xué)期望.(結(jié)果可以用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲有一只放有a本《周易》,b本《萬年歷》,c本《吳從紀要》的書箱,且a+b+c ="6" (a,b,cN),乙也有一只放有3本《周易》,2本《萬年歷》,1《吳從紀要》的書箱,兩人各自從自己的箱子中任取一本書(由于每本書厚薄、大小相近,每本書被抽取出的可能性一樣),規(guī)定:當兩本書同名時甲將被派出去完成某項任務(wù),否則乙去.
(1) 用a、b、c表示甲去的概率;
(2) 若又規(guī)定:當甲取《周易》,《萬年歷》,《吳從紀要》而去的得分分別為1分、2分、3分,否則得0分,求甲得分的期望的最大值及此時a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋擲兩個骰子,取其中一個的點數(shù)為點P的橫坐標,另一個的點數(shù)為點P的縱坐標,求連續(xù)拋擲這兩個骰子三次,點P在圓內(nèi)的次數(shù)的均值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠家擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令表示該公司的資助總額.
(Ⅰ)寫出的分布列;
(Ⅱ)求數(shù)學(xué)期望

查看答案和解析>>

同步練習冊答案