已知集合A={-1,0,1,2},若A∪B=A,試寫出所有可能出現(xiàn)的B的集合.
考點:并集及其運算
專題:集合
分析:根據(jù)A與B的并集為A,得到B為A的子集,找出A的所有子集即為集合B.
解答: 解:∵A∪B=A,∴B⊆A,
∵A={-1,0,1,2},
∴B={-1};{0};{1};{2};
{-1,0};{-1,1};{-1,2};
{-1,0,1};{-1,0,2};
{0,1};{0,2};{0,1,2};{1,2};
{-1,0,1,2};{-1,1,2};∅.
點評:此題考查了并集及其運算,以及集合的子集,熟練掌握并集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線C1:y2=4x的焦點F恰好是雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點,且C1與C2交點的連線過點F,則雙曲線C2的離心率為( 。
A、
2
+1
B、2
2
-1
C、3+2
2
D、
6
+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
b
x
+c(a>0)的圖象在點(1,f(1))處的切線方程為y=x-1.
(1)用a表示出b,c;
(2)證明:當a≥
1
2
時,f(x)≥1nx在[1,+∞)上恒成立;
(3)證明:1+
1
2
+
1
3
+…+
1
n
>1n(n+1)+
n
2(n+1)
.(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,an+1=2an,
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)若bn=anlog2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上的任意兩點.
(1)當x1+x2=1時,求f(x1)+f(x2)的值;
(2)設(shè)Sn=f(
1
n+1
)+f(
2
n+1
)+…+f(
n-1
n+1
)+f(
n
n+1
),其中n∈N*,求Sn;
(3)對于(2)中Sn,已知an=(
1
Sn+1
2,其中n∈N*,設(shè)Tn為數(shù)列{an}的前n項的和,求證:
4
9
≤Tn
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年男足世界杯在巴西舉行,為了爭奪最后一個小組賽參賽名額,甲、乙、丙三支國家隊要進行比賽,根據(jù)規(guī)則:每兩支隊比賽一場,共賽三場;每場比賽勝者得3分,負者得0分,沒有平局,獲得第一名的隊伍將奪得這個參賽名額.甲勝乙的概率為
2
3
,甲勝丙的概率為
1
4
,乙勝丙的概率為
1
5

(1)求甲獲第一名且丙獲第二名的概率:
(2)設(shè)在該次比賽中,丙得分為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2-3x+2<0的解集為A={x|1<x<b}
(1)求a,b的值;
(2)求函數(shù)f(x)=(2a+b)x-
9
(a-b)x
在區(qū)間[3,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x2,x∈R
(1)若正數(shù)m,n滿足m•n>1,證明:f(m),f(n)至少有一個不小于零;
(2)若a,b為不相等的正實數(shù)且滿足f(a)=f(b),求證a+b<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過點A(-2,2)且與直線y=x+6在y軸上有相同的截距,則直線l的一般式方程為
 

查看答案和解析>>

同步練習(xí)冊答案