15.已知等差數(shù)列{an}中,a7+a9=16,a4=1,則a12的值是( 。
A.64B.31C.30D.15

分析 利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a7+a9=16,a4=1,∴$\left\{\begin{array}{l}{2{a}_{1}+14d=16}\\{{a}_{1}+3d=1}\end{array}\right.$,
解得a1=-$\frac{17}{4}$,d=$\frac{7}{4}$
則a12=$-\frac{17}{4}$+$\frac{7}{4}$×11=15.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.從1,2,3,4,5中隨機(jī)取出兩個(gè)不同的數(shù),則其和為奇數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{2}$+y2=1,過(guò)點(diǎn)P(-2,0)的直線l交E于A,B兩點(diǎn),且$\overrightarrow{PB}=λ\overrightarrow{PA}$(λ>1).點(diǎn)C與點(diǎn)B關(guān)于x軸對(duì)稱.
(1)求證:直線AC過(guò)定點(diǎn)Q,并求該定點(diǎn);
(2)在(1)的條形下,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知點(diǎn)P是邊長(zhǎng)為2的正三角形ABC的重心,則$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值為(  )
A.0B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列各數(shù)中,最小的數(shù)是(  )
A.75B.111111(2)C.210(6)D.85(9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知命題p:實(shí)數(shù)x滿足|2x-m|≥1;命題q:實(shí)數(shù)x滿足$\frac{1-3x}{x+2}$>0.
(Ⅰ)若m=1時(shí),p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若?p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.sin$\frac{7π}{6}$=-$\frac{1}{2}$,cos222.5°-sin222.5°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a,b,c分別是△ABC的中角A,B,C的對(duì)邊,acsinA+4sinC=4csinA.
(1)求a的值;
(2)圓O為△ABC的外接圓(O在△ABC內(nèi)部),△OBC的面積為$\frac{\sqrt{3}}{3}$,b+c=4,判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)y=sinx和y=cosx在x=$\frac{π}{4}$處的兩條切線與x軸圍成封閉區(qū)域D,點(diǎn)(x,y)∈D,則x+2y的最小值為$\frac{π}{4}$-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案