分析 設(shè)P在雙曲線的右支上,再根據(jù)點(diǎn)P為橢圓和雙曲線的一個(gè)交點(diǎn)結(jié)合定義求出|PF1|與|PF2|的表達(dá)式,結(jié)合向量數(shù)量積的定義即可求出PF1•PF2的值.
解答 解:因?yàn)闄E圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1和雙曲線$\frac{x^2}{4}$-$\frac{y^2}{5}$=1有共同的焦點(diǎn)F1、F2,
所以c=3;橢圓中的a=5,雙曲線中的a'=2,
設(shè)P在雙曲線的右支上,左右焦點(diǎn)F1、F2:
利用橢圓以及雙曲線的定義可得:|PF1|+|PF2|=2a=10 ①
|PF1|-|PF2|=2a'=4 ②
由①②得:|PF1|=7,|PF2|=3.|F1F2|=2c=6,
則cos<$\overrightarrow{P{F_1}}$,$\overrightarrow{P{F_2}}$>=$\frac{|\overrightarrow{P{F}_{1}}{|}^{2}+|\overrightarrow{P{F}_{2}}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|\overrightarrow{P{F}_{1}}||\overrightarrow{P{F}_{2}}|}$=$\frac{49+9-36}{2×7×3}=\frac{22}{42}$=$\frac{11}{21}$
則$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=|$\overrightarrow{P{F_1}}$|•|$\overrightarrow{P{F_2}}$|cos<$\overrightarrow{P{F_1}}$,$\overrightarrow{P{F_2}}$>=7×3×$\frac{11}{21}$=11
故答案為:11.
點(diǎn)評(píng) 本題主要考查向量數(shù)量積的計(jì)算,根據(jù)雙曲線和橢圓的定義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-5,4] | B. | [-5,0] | C. | [0,-5] | D. | [0,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$≤a<$\frac{1}{2}$ | B. | $0≤a<\frac{1}{2}$ | C. | 0≤a<1 | D. | $-\frac{1}{2}<a≤0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com