如圖,正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M是面對角線A1B上的動(dòng)點(diǎn),則AM+MD1的最小值為
 

考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:空間位置關(guān)系與距離
分析:把對角面A1C繞A1B旋轉(zhuǎn),使其與△AA1B在同一平面上,連接AD1并求出,根據(jù)平面內(nèi)兩點(diǎn)之間線段最短,可知就是最小值.
解答: 解:把對角面A1C繞A1B旋轉(zhuǎn),使其與△AA1B在同一平面上,連接AD1,
則在△AA1D中,AD1=
1+1-2×1×1×cos135°
=
2+
2
為所求的最小值.
故答案為:
2+
2
點(diǎn)評:本題的考點(diǎn)是點(diǎn)、線、面間的距離計(jì)算,主要考查考查棱柱的結(jié)構(gòu)特征,考查平面內(nèi)兩點(diǎn)之間線段,最短考查計(jì)算能力,空間想象能力,基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)滿足:a1=1-3k(k∈R),an=4n-1-3an-1
(1)判斷數(shù)列{an-
4n
7
}是否為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}為遞增數(shù)列,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長BC=a,AC=b,AB=c,O為△ABC所在平面內(nèi)一點(diǎn),若a
OA
+b
OB
+c
OC
=
0
,則點(diǎn)O是△ABC的( 。
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x3-9x2+12x+8c
(1)當(dāng)c=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若對于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(ax2-x+3),(a<1)在[2,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(1,
3
2
),且離心率為
1
2

(1)求橢圓方程;
(2)直線l過點(diǎn)(-1,0),與橢圓C相交于A、B兩點(diǎn),且|AB|=
10
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|-5|的相反數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式:-x2+4x+5<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x2+1)
(1)求函數(shù)f(x)的定義域和值域;
(2)證明:函數(shù)f(x)在(0,+∞)上遞增.

查看答案和解析>>

同步練習(xí)冊答案