橢圓:的右焦點(diǎn)為且為常數(shù),離心率為,過焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
(3)試問的值是否與直線的傾斜角的大小無關(guān),并證明你的結(jié)論
(1)(2)(3)為定值
解析試題分析:(1),得:,橢圓方程為 3分
(2)當(dāng)時(shí),,得:,
于是當(dāng)=時(shí),,于是,
得到 6分
(3)①當(dāng)=時(shí),由(2)知 8分
②當(dāng)時(shí),設(shè)直線的斜率為,,則直線MN:
聯(lián)立橢圓方程有,
,, 11分
=+==
得
綜上,為定值,與直線的傾斜角的大小無關(guān) 14分
考點(diǎn):橢圓方程性質(zhì)及直線與橢圓的位置關(guān)系
點(diǎn)評:橢圓中,離心率,第三問在判定是否為定值時(shí)需將直線分兩種情況:斜率存在與不存在,當(dāng)斜率存在時(shí)常聯(lián)立方程利用根與系數(shù)的關(guān)系求解
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的長軸長為,離心率.
Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
Ⅱ)若過點(diǎn)B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點(diǎn)E,F(xiàn)(E在B,F(xiàn)之間),且OBE與OBF的面積之比為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過直線y=﹣1上的動(dòng)點(diǎn)A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)(1)中所求軌跡與直線交于點(diǎn)、兩點(diǎn) ,求證(為原點(diǎn))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,己知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B(2,0).
(1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M軌跡C的方程:
(2)若過點(diǎn)B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)是離心率為的橢圓:上的一點(diǎn),斜率為的直線交橢圓于、兩點(diǎn),且、、三點(diǎn)不重合.
(1)求橢圓的方程;
(2)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的中心在原點(diǎn),其上、下頂點(diǎn)分別為,點(diǎn)在直線上,點(diǎn)到橢圓的左焦點(diǎn)的距離為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上異于的任意一點(diǎn),點(diǎn)在軸上的射影為,為的中點(diǎn),直線交直線于點(diǎn),為的中點(diǎn),試探究:在橢圓上運(yùn)動(dòng)時(shí),直線與圓:的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com