如圖,拋物線

(I);
(II)

(I)p=2(II)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線C上任一點(diǎn)到定點(diǎn)(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標(biāo)軸垂直的直線分別交曲線C于A、B兩點(diǎn),且,設(shè)M是AB中點(diǎn),問是否存在一定點(diǎn)和一定直線,使得M到這個定點(diǎn)的距離與它到定直線的距離相等.若存在,求出這個定點(diǎn)坐標(biāo)和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左焦點(diǎn)為F, 離心率為, 過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)A, B分別為橢圓的左右頂點(diǎn), 過點(diǎn)F且斜率為k的直線與橢圓交于C, D兩點(diǎn). 若, 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長時,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點(diǎn),為線段的中點(diǎn),射線交橢圓與點(diǎn),設(shè),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線的焦點(diǎn)F作斜率分別為的兩條不同的直線,且,相交于點(diǎn)A,B,相交于點(diǎn)C,D。以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為。
(I)若,證明;;
(II)若點(diǎn)M到直線的距離的最小值為,求拋物線E的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點(diǎn)在拋物線上.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過拋物線上的動點(diǎn)作拋物線的兩條切線、, 切點(diǎn)為.若、的斜率乘積為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的右焦點(diǎn)為為常數(shù),離心率為,過焦點(diǎn)、傾斜角為的直線交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時,=,求實(shí)數(shù)的值;
(3)試問的值是否與直線的傾斜角的大小無關(guān),并證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊答案